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LINEAR MINIMUM  VARIANCE ESTIMATE

• Similar to Gauss-Markov theorem in Chapter 14 (LLD (2006))

• z = Hx + v

• Assumptions:
• E(v) = 0, COV(v) = Σv – SPD

• E(x) = mx, COV(x) = Σx – SPD

• x, v are not correlated

• Seek   𝑥 = Ф(z) = Az + b
• Linear, unbiased, min. variance estimate
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MINIMUM VARIANCE - CONTINUED

• Let   𝑥 = 𝑥 −  𝑥

• We seek to minimize mean squared error:

where COV(  𝑥) = P
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CONDITION FOR UNBIASEDNESS

• m = E(  𝑥) = E(b + Az) = b + A⋅E(Hx + v) = b + AHm

• b = (I - AH)m

•  𝑥 = b + Az = (I - AH)m + Az = m + A(z - Hm)

• Look at this structure – we saw it in Bayesian framwork!

• P = COV(  𝑥) = E[(x -  𝑥) (x -  𝑥)T]

• x -  𝑥 = (x - m) – A(z - Hm)

• (x -  𝑥)T(x -  𝑥) = [(x - m) – A(z - Hm)][(x - m) – A(z - Hm)]T

= (x - m)(x - m)T – (x - m)(z - Hm)TAT

- A(z - Hm)(x - m)T +A(z - Hm)(z - Hm)TAT

• But z = Hx + v, z - Hm = H(x - m) + v
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EXPRESSION FOR THE VARIANCE

• ∴ P = E(x -  𝑥)(x -  𝑥)T

= E[(x - m)(x - mT]     Σx

- E[(x - m)[(x - m)THT + vT]]AT
 -ΣxH

TAT

- E[AH(x - m) + v][x - m]T
 -AHΣx

+ ATE[(H(x - m) + v)(H(x - m) + v)T]A  ADAT

• P = Σx + ADAT - AHΣx - Σx HTAT , D = (HΣxH
T + Σv)

• Thus P is a quadratic function of A|nxm
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MINIMIZING THE TOTAL VARIANCE

• Minimize trace of P (total variance) w.r.t. A

• tr(P)  =  𝑖=1
𝑛 Pii

• Pii = (Σx)ii + Ai*DAi*
T – Ai*bi*

T – bi*Ai*
T

• bi* = ith row of n x m matrix ΣxH
T

• Pii = Ai*DAi*
T – 2bi*

TAi* + (Σx)ii

= yTDy – 2by + c

• y = Ai* ith row of A, yT = Ai*
T

• b = bi*
T, bT = bi*
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MINIMIZATION
• Minimize Pii w.r.t y – a standard quadratic form

• ∇Pii = 2Dy – 2b = 0

• => y = D-1b

• => Ai*
T = D-1bi*

T

• [A1*
T A2*

T …… Am*
T] = D-1[b1*

T b2*
T…. bm*

T]

7



OPTIMAL P

• AT = D-1HΣx

• A = ΣxH
TD-1

= ΣxH
T[HΣxH

T + Σv]
-1

• ∴  x= m + ΣxH
T[HΣxH

T + Σv]
-1[z - Hm]

• Substituting A in P

• => P = Σx - ΣxH
T[HΣxH

T + Σv]
-1HΣx

Subtracted
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RELATION BETWEEN BAYES L.S. SOLUTION AND LINEAR 
MIN. VARIANCE SOLUTION - DUALITY

• Bayesian – state space
•  xMS = Σe[HTΣv

-1z + Σe
-1mx]  (16.2.26)

• Σe = [HTΣe
-1H + Σe]-1 = COV( xMS)  (16.2.25)

• State-space, used for n < m

• L.M.V. – observation space
•  x = m + ΣxH

T[HΣxH
T + Σv]

-1[z - Hm]  (17.1.15)

• P = Σx – ΣxH
T[HΣxH

T + Σv]
-1HΣx (17.1.11)

• Observation space, used for m < n

• They are the same!
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BRIDGE: SHERMAN-MORRISON-WOODBURY LEMMA 
IN MATRIX THEORY (APPENDIX B)

• LMV

• Recall: D = (HΣxH
T + Σv)

• D-1 = (HΣxH
T + Σv)

-1

= Σv
-1 - Σv

-1H[HTΣv
-1H + Σx

-1]-1HTΣv
-1

• Multiply both side by ΣxH
T

ΣxH
T[HΣvH

T + Σv]
-1

= ΣxH
TΣv

-1 – ΣxH
TΣv

-1H[HTΣv
-1H + Σx

-1]-1HTΣv
-1

={Σx – ΣxH
TΣv

-1H[HTΣv
-1H + Σv

-1]-1}HTΣv
-1

={Σx[H
TΣv

-1H+Σx
-1]-ΣxH

TΣv
-1H}(HTΣv

-1H+Σx
-1)-1HTΣv

-1

= I⋅(HTΣv
-1H+Σx

-1)-1HTΣv
-1
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SHERMAN-MORRISON-WOODBURY CONTINUED

• Now, substitute in (17.1.15)

 x = m + ΣxH
T[HΣxH

T + Σv]
-1(z - Hm)

= m + (HTΣv
-1H + Σx

-1)-1HTΣv
-1(z - Hm)

= (HTΣv
-1H + Σx

-1)-1HTΣv
-1z

+ {I – (HTΣv
-1H + Σx

-1)-1HTΣv
-1H}m

• Consider the second term:

{I – (HTΣv
-1H + Σx

-1)-1HTΣv
-1H}m

= (HTΣv
-1H + Σx

-1)-1[(HTΣv
-1 H+ Σx

-1) - HTΣv
-1H]m

= (HTΣv
-1H + Σx

-1)[Σx
-1m]

• Combining

 x = (HTΣv
-1H + Σx

-1)-1[Σx
-1m + HTΣv
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KALMAN FILTERS - STATIC CASE
• x ∊ Rn – unknown, constant

• x- is an unbiased estimate of x if no observation.

• E(x-) = x

• (x-, Σ-) – prior information

• z = Hx + v, E(v) = 0, COV(v) = Σv

• Usual conditions on v

• Linear Min. Variance Approach

• x+ = Lx- + Kz (x+: posterior)

• Find L, K such that x+ us unbiased and has minimum variance
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STATIC CASE - CONTINUED
• (a) Unbiasedness:

• x+ = Lx- + Kz

• x = E(x+)

= E[Lx- + Kz]

= E[Lx- + K(Hx + v)]

= LE(x-) + KHx + KE(v)

= Lx + KHx = (L + KH)x

• ∴ L + KH = I or L = I – KH

• ∴ x+ = Lx- + Kz

= (I - KH)x- + Kz

= x- + K[z - Hx-]

structure of the unbiased estimate
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STATIC CASE - CONTINUED
• We now need to compute the total variance of x+

• var(x+) = E[(x+ - x)T(x+ - x)]

= E[tr[(x+ - x)T(x+ - x)]]

= E[tr[(x+ - x) (x+ - x)T]]

= tr(Σ+)

• Recall:

• x+ = (I – KH)x- + Kz

= (I – KH)x- + KHx + Kv

• ∴ x+ - x = (I – KH)x- + KHx – x + Kv

= (I – KH)(x- - x) + Kv
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STATIC CASE - CONTINUED
• ∴ Σ+ = E[(I – KH)(x- - x) + Kv] [(I – KH)(x- - x) + Kv]T

= (I - KH)E[(x- - x)(x- - x)T](I – KH)T + KE(vvT)KT

= (I – KH)Σ-(I – KH)T + KΣvK
T

= Σ- + KDKT – KHΣ- - Σ-H
TKT

D = (HΣ-H
T + Σv)

• Choose K to minimize tr(Σ+)

• Similar to the problem we just solved.

• => K = Σ-H
TD-1

= Σ-H
T[HΣ-H

T + Σv]
-1

Kalman gain
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STATIC CASE - CONTINUED
• ∴ x+ = x- + Σ-H

T[HΣ-H
T + Σx]

-1[z – Hx-]

Σ+ = Σ- - Σ-H
T[HΣ-H

T + Σv]
-1HΣ-
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EXERCISES
1. Σ+ does not depend on observations and hence can be   

precomputed – Verify this claim

2. Reformulate as 3-D Var

(x-, Σ-) and (z, Σv)   z = Hx + v

f(x) = ½(z - Hx)TΣv
-1(z - Hx) + ½(x- - x)TΣ−

−1 (x- - x)

Min. f(x) w.r. to x and find the solution

17



REFERENCE
• A. P. Sage and J. L. Melsa (1971) Estimation Theory and its application 

to communications and Control, McGraw Hill

• Also refer to chapter 17 in LLD (2006)

18


