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BAYESIAN FRAMEWORK

e X € R" — unknown, random — p(x) is prior
* z € R™— observation about x — p(z|x) — conditional distribution
e X = ®(z) be an estimate
* DefineerrorX =x-X
* Cost function c: R" =2 R, c(X) is called the cost associated with
error
* Properties:
e c(0)=0
* c(a) sc(b)if [[al| <|]b]]



EXAMPLES OF COST FUNCTION C(-)

e Sum of squared error

ex) = (x—x)" (x—x)
* Weighted sum of squared error
ex) = ¥ Wx = (x—x)TW(x-x)
= |(x—x)|ky

 Uniform cost

0, if ||x|| < €
1, otherwise

e Absolute error (x is a scalar)

clr) = ||::“r* — E*]|



EXAMPLES OF COST FUNCTION C(.) (CONT’D)

* Symmetry + Convexity

* Symmetry: c(x) = ¢(—x)
e Convex: clax + (1 —aly) < aclx)+(1l—alcly)
*0< ac<l

e c(y)

X y




STATEMENT OF THE PROBLEM

e Given p(x), p(z|x), zand c(.), goal is to minimize Bayes cost function:

Bix)= Flc(x)] = / [ clx — x) | plx. zldxdz
. li':l_!'_:':"!- . li':l_!'_:"!-

* Since p(x,z) = p(z|x)p(x) = p(x]|z)p(z),

Joint distribution
Bix) = [|om Blx|z)p(z)dz
where Bix|z) = [mpnelx—x)p(x|z)dx

* Since p(z) > 0, minimizing B(X|z), minimizes B(X)



SPECIAL CASES
A) BAYES LEAST SQUARES ESTIMATOR

e Define = Ex|z] = /Rn X p(x|z)dx
* 1 is a function of the observations z

* Then choosing c(x) = (x - X)"W(x - X)
B(x) = FEle(x)]

= Fl(x—x)TW(x—x)]
= Ellx—p+p—%)"Wx—p+p— %)
= El(x—p)"W(x—p)]+ E[(p —x)TW(u — x)]

+2FE[(x — )P W(p — x)]



e Using iterated law of Conditional expectations

El(x—p)'W(p—%)] = E{E[(x—p) W(u—%)] }

* But
Ef(x — p)' W(pu — x)|z]

(1 —x)" WE[(x — p)|2]
= (n—x)'W{E(x|z) — p}

= 0



e B(x) = Fllx—p)Wix— )] +E[(p—x)TW(p— x)]
* The only control we have is the choice of X
* B(X) is minimum when

X = = E(x]|z) = posterior mean

Xxms = Elx|z]

_ plz|x)p(x)

J"Eﬂ_ xplz|x)pl(x)dx
JrEﬂ plz|x)p(x)dx




PROPERTIES OF BAYES LEAST SQUARES ESTIMATE

* Xysisunbiased: E[x —=xys] = E{E[x— Xrs|z]}

= 0
* X =X '5C\MS => E(f) = E[X' 5C\MS] =0
- * Mlean of the error is zero
» B(xumslz) = [pa(x—%as)! (X — Xars)p(x]z)dx [W=1]

= total variance in the components of X

* Since %), minimizes B(X |z) => X, also minimizes the variance in the
estimate



See the |similarity

i y
Using only obs + prior
observation l
5C\LS is BLUE Xps 1S BLUE

(GAUSS-MARKOQV) (Bayes Posterior Mean Square)



EXAMPLE 16.2.1

*z=x+v v~N(0,02%) x~N(m,o?),xandvincorrelated
E(xv) =0
=>z ~ N(m,, 0%) where 6°=0,%2 + 0,2
 Compute p(x]|z)
* Recall p(z]x) = N(x, ,2), p(x) = N(m,, 0,?)

plz|xip(x)
plz)

p(x|jz) =

™ 2 WT A o
Nix.ol) Nimg,o5)
T - ™5~
N{mig,0“)

. 3 91{:‘_{_;[{:—.1*]2 | (x—1mgy )2 - [t—lllm::lz]}_
- F X] 2 T ! o= o<



EXAMPLE CONTINUED

» Simplifying the term in square brackets:

(z—x) | (r—1mng )2

: >
(z—1rigy )=

2 | 2
T T

* We need to compute it as
* Define

(T2

4 - 1 4 1 _
2 - 2 | 2 -
TS T T
and
XMSE _ | Iy
3 - 2 2
I-‘TE' ETL' 'fr.'[“

T35 +T5

22
TETE

| [:? L mi  (z—myg)?
R L a?
->(2)



EXAMPLE CONTINUED

* R.H.S. (1) becomes

A2 9 _
gg[il E‘}L”q—l—h”q —
ﬁIE
.. plxlz) = «a e"a]:r[—l“ i;”’ ]
e .. Posterior meanis
XMS = (%}]11,1' -+ {%)z > (5)
oy oz .
— I:LTE—FET‘L'; )1]’.L_,|_ I l::fTE—FLTE }.f’.-
= am, + (1 — «a) > (6)

13



EXAMPLE CONTINUED

2

* Xys=m, +( de >)[ z—m ]—— Kalman-filter form

l 0% +0% l

l

prior Kalman gain Innovations

.~ If 0,2>>0,2 =>observation has a larger weight

If 0,2<<0,2=>prior has a larger weight

* Xpys=am +(1-a)z
=m,+am,—m, + (1-a)z

=m,+ (1-a)[z-m,] ->(7) Adaptive

nature!



VECTOR CASE: Z=HX+V

*v:E(v)=0 E(w')=%, v~N(O,2,)

*x: E(x) =m,_ cov(x) =%, x~N(m,Z)
e => Hx~N(Hm,, HZ HT)
* Note: v, x are uncorrelated

* Z is normal

*E(z) =Hm,_->(8)

* cov(z) = E[(z-HmM,) (z-Hm )]
= E[(Hx+v-Hm,) (Hx+v-Hm )T]
= E[H(x-m_)+V][H(x-m, )+v]T
= H[E[(x-m,) (x-m,)T]HT + E[vvT]
=HEIHT*5, ->(9)



VECTOR CASE

* E[z|x] = E[ Hx+v |X]

= Hx + E[v|X]

= Hx -> (10)
* cov(z|x) = E(w') =2, ->(11)
+p(zlx)=N(Hx, 5,)  ->(12)



POSTERIOR ANALYSIS

* p(x|z) = p(z|x)p(x)/p(z)
= N(Hx, Z,) N(m, 2. )/ N(Hm,, 2)
= a exp[- % (z-Hx)" Z,%(z-Hx)
— % (x-m, )2 1 (x-m,)
+ % (z-Hm )'ZY(z-Hm,) -> (13)
* Consider the exponent:
o X"[H'Z,*H+Z x = 2[H"Z 1z+2 tm J'x + 2721z +
m 2 tm, —(z-Hm )'2Y(z-Hm,) -> (14)
=(x-Xys) 2.t (x - Xys) -> (15)
o =>3 1= (H'2,TH+3, ) -> (16)
¢ 5C\MS = Ze[HTZV-]‘Z'FZX_lmX] -> (17)



EXERCISES

 Substituting (16), (17) in (15), verify that (14) and (15) are equivalent
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