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BAYESIAN FRAMEWORK

• x ∊ Rn – unknown, random – p(x) is prior

• z ∊ Rm – observation about x – p(z|x) – conditional distribution

•  𝑥 = Ф(z) be an estimate
• Define error  𝑥 = x -  𝑥

• Cost function c: Rn
 R, c(  𝑥) is called the cost associated with 

error

• Properties:
• c(0) = 0

• c(a) ≤ c(b) if ||a|| < ||b||
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EXAMPLES OF COST FUNCTION C(∙)

• Sum of squared error

• Weighted sum of squared error

• Uniform cost

• Absolute error (x is a scalar)
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EXAMPLES OF COST FUNCTION C(.) (CONT’D)

• Symmetry + Convexity
• Symmetry:

• Convex:

• 0 ≤  a ≤ 1

x                     y

c(x)                       c(y)
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STATEMENT OF THE PROBLEM

• Given p(x), p(z|x), z and c(.), goal is to minimize Bayes cost function:

• Since p(x,z) = p(z|x)p(x) = p(x|z)p(z),

where

• Since p(z) > 0, minimizing B(  𝑥|𝑧), minimizes B(  𝑥)

Joint distribution
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SPECIAL CASES
A) BAYES LEAST SQUARES ESTIMATOR

• Define

• μ is a function of the observations z

• Then choosing c(x) = (x -  𝑥)TW(x -  𝑥)
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• Using iterated law of Conditional expectations 

• But 
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• .

• The only control we have is the choice of  𝑥

• B(  𝑥) is minimum when

 𝑥 = μ = E(x|z) = posterior mean
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PROPERTIES OF BAYES LEAST SQUARES ESTIMATE

•  𝑥𝑀𝑆 is unbiased:

•  𝑥 = x  -  𝑥𝑀𝑆 => E(  𝑥) = E[x-  𝑥𝑀𝑆] = 0

• * Mean of the error is zero
• [W = I]

= total variance in the components of  𝑥

• Since  𝑥𝑀𝑆 minimizes B(  𝑥|z) =>  𝑥𝑀𝑆 also minimizes the variance in the 
estimate
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See the similarity

obs + prior

 𝑥𝑀𝑆 is BLUE

(Bayes Posterior Mean Square)

Using only 
observation

 𝑥𝐿𝑆 is BLUE

(GAUSS-MARKOV)
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EXAMPLE 16.2.1

• z = x + v    v ~ N(0, σv
2)     x ~ N(mx, σx

2), x and v incorrelated

E(xv) = 0

=> z ~ N(mx, σ
2) where σ2 = σx

2 + σv
2

• Compute p(x|z)
• Recall p(z|x) = N(x, σv

2), p(x) =  N(mx, σx
2)
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EXAMPLE CONTINUED

• Simplifying the term in square brackets:

• We need to compute it as a perfect square

• Define 

and 
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-> (1)

-> (2)

-> (3)



EXAMPLE CONTINUED

• R.H.S. (1) becomes 

• ∴

• ∴ Posterior mean is
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-> (4)

->  (5)

->  (6)



EXAMPLE CONTINUED

•  𝑥𝑀𝑆 = mx + (
𝜎𝑥

2

𝜎𝑥
2+𝜎𝑣

2)[ z – mx]             Kalman-filter form

• ∴ If  σx
2 >> σv

2 => observation has a larger weight

If  σx
2 << σv

2 => prior has a larger weight

•  𝑥𝑀𝑆 = amx + (1-a)z

= mx + amx – mx + (1-a)z

= mx + (1-a)[z-mx]   -> (7)
Adaptive 
nature!

prior    Kalman gain       innovations
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VECTOR CASE: Z = HX + V
• v: E(v) = 0    E(vvT) = Σv v~N(0, Σv)

• x: E(x) = mx cov(x) = Σx x~N(mx, Σx)
• => Hx~N(Hmx, HΣxH

T)
• Note: v, x are uncorrelated

• z is normal

• E(z) = Hmx -> (8)

• cov(z) = E[(z-Hmx) (z-Hmx)
T]

= E[(Hx+v-Hmx) (Hx+v-Hmx)
T]

= E[H(x-mx)+v][H(x-mx)+v]T

= H[E[(x-mx) (x-mx)
T]HT + E[vvT]

= H ΣxH
T + Σv -> (9) 15



VECTOR CASE
• E[z|x] = E[ Hx+v |x]

= Hx + E[v|x]

= Hx -> (10)

• cov(z|x) = E(vvT) = Σv -> (11)

• p( z|x) = N(Hx, Σv) -> (12)
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POSTERIOR ANALYSIS

• p(x|z) = p(z|x)p(x)/p(z)

= N(Hx, Σv) N(mx, Σx)/ N(Hmx, Σ)

= α exp[- ½ (z-Hx)T Σv
-1(z-Hx) 

– ½ (x-mx)
TΣx

-1 (x-mx) 

+ ½ (z-Hmx)
TΣ-1(z-Hmx) -> (13)

• Consider the exponent:
• xT[HTΣv

-1H+Σx
-1]x – 2[HTΣv

-1z+Σx
-1mx]

Tx + zTΣv
-1z + 

mx
TΣx

-1mx – (z-Hmx)
TΣ-1(z-Hmx)  -> (14)

≣(x -  𝑥𝑀𝑆)T Σe
-1 (x -  𝑥𝑀𝑆) -> (15)

• => Σe
-1= (HTΣv

-1H+Σx
-1) -> (16)

•  𝑥𝑀𝑆 = Σe[HTΣv
-1z+Σx

-1mx]  -> (17)
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EXERCISES
• Substituting (16), (17) in (15), verify that (14) and (15) are equivalent
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