

Module – 6.3

MAX LIKELIHOOD METHOD

S. Lakshmivarahan

School of Computer Science

University of Oklahoma

Norman, Ok – 73069, USA

varahan@ou.edu

- $z = Hx + v$ or $z = h(x) + v$
 - Assume x and v are not correlated
- $P(z|x)$ is the conditional distribution of z
- Likelihood function $L(x|z) = p(z|x)$
 - function of x
 - dual interpretation
- Fisher's (1920) principle: given z , what is the value of x that minimize $p(z|x)$
 - (ie) Maximize the prob. of observing the sample z

THE ML METHOD

- $z = h(x) + v$
- $E(v) = 0, E(x^T v) = 0, E(vv^T) = 0$
- Let $v \sim N(0, \Sigma) \Rightarrow p(z|x) \sim N(h(x), \Sigma)$
- By def. $L(\hat{x}_{ML}|z) \geq L(\hat{x}|z)$
- $\Rightarrow \ln L(\hat{x}_{ML}|z) \geq \ln L(\hat{x}|z)$
- A necessary condition is:

$$\nabla_x [\ln L(x|z)] = \frac{1}{L(x|z)} \nabla_x L(x|z) = 0$$

for any other
estimate

EXAMPLE 15.1.1

- $z = H\mu + v, \mu \in \mathbb{R}$
- $H = [1, 1, \dots, 1]^T$
- $z_i = \mu + v_i, \text{ for } i=1, 2, \dots, m$
- $E[vv^T] = N(0, \sigma^2), R = \sigma^2 I$
- $z \sim N(H\mu, \sigma^2 I)$
- $L(x|z) = p(z|x) = N(H\mu, \sigma^2 I)$
$$= (2\pi)^{-\frac{m}{2}} (\sigma^2)^{-\frac{m}{2}} \exp \left[-\frac{1}{2\sigma^2} (z - H\mu)^T (z - H\mu) \right]$$

EXAMPLE 15.1.1 (CONT'D)

$$\begin{aligned}\bullet \Rightarrow 0 = \nabla_{\mathbf{x}} \ln L(\mathbf{x}|\mathbf{z}) &= \begin{bmatrix} \frac{\partial \ln L(\mathbf{x}|\mathbf{z})}{\partial \mu} \\ \frac{\partial \ln L(\mathbf{x}|\mathbf{z})}{\partial \sigma^2} \end{bmatrix} \\ &= \begin{bmatrix} \frac{1}{\sigma^2} \sum_{i=1}^m (z_i - \mu) \\ -\frac{m}{2} \left(\frac{1}{\sigma^2} \right) + \frac{1}{2\sigma^4} \sum_{i=1}^m (z_i - \mu)^2 \end{bmatrix}\end{aligned}$$

$$\bullet \therefore \hat{\mu}_{ML} = \frac{1}{m} \sum_{i=1}^m z_i = \bar{z} \text{ and } \hat{\sigma}_{ML}^2 = \frac{1}{m} \sum_{i=1}^m (z_i - \bar{z})^2$$

- Both are unbiased

CRAMER-RAO BOUND: (SECTION 13.2) (LLD (2006))

- $\ln L(x|z)$ – Log of likelihood function
- $\nabla_x^2[\ln L(x|z)]$ – Hessian of the log of likelihood
- $I(x) = -E[\nabla_x^2 \ln L(x|z)]$ – Called Information matrix
 $= E[\nabla_x \ln L(x|z)] [\nabla_x \ln L(x|z)]^T$
- \hat{x} be an estimate of x , then $\text{cov}(\hat{x}|x) \geq I^{-1}(x)$
- Non-linear case:
$$I(x|z) = -(m/2)\log(2\pi) - (m/2)\ln(\sigma^2) - (1/2\sigma^2)(z - h(x))^T(z - h(x))$$
- Solved iteratively

EXERCISES

- Verify that $L(\hat{x}_{ML}|z)$ is a maximum by computing second derivative.

REFERENCES

- J. L. Melsa and D. L. Cohn (1978) Decision and Estimation Theory *McGraw Hill*
- Also refer to chapter 15 in LLD (2006)