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STATISTICAL LEAST SQUARE ESTIMATE

e Givenz=Hx+v,zER™ x €ER"
e E(v)=0
* E(vwT) = R—known, S.P.D. => Rl information matrix exists
* xand v are correlated

e Define residual r(x) = z— Hx

* Weight sum of squared residuals
| - . 1 ‘
fx) = 5l OR 1 e(x) = 5 r(x)|E-

o e
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— 5(3 — Hx)' R (z — Hx)



STATISTICAL LEAST SQUARE ESTIMATE (CONT’D)

e Vf(x) = (H'RIH)x — H'R1z ->(1)
* V2f(x) = HTR-1H > (2)
s x;s=(H R'TH) "'TH R 1z -3



OBSERVATIONS

 Unbiasedness

xrs = (H'RTH)"'H'R 'z  gndZ=Hx+V
— x4+ (H R 'H)"'TH R v
E(xrs) = x+ (H'RTH)'TH' R E(v)

—= X.

* X; ¢ is unbiased

e Covariance of the estimate

COV(xrs) = FE[(xps — x)(xrs — x)7]
— (H'R'H)"'H'R'E(vwT)R-'HHTR-'H)"!
_ {HTR—IH)—I

— [VZf(x)]



OBSERVATIONS (CONT’D)

* Relation to Projection

.

z — H=x;s

HH' R 'H)"'H' R 1z
Pz
P=HH'R'H'H R!

* |dempotent: P> =P

* Non-symmetric: P # PT

 => P is an oblique projection

* Note: when R1 =1, P=P"is symmetric (orthogonal projection)



OBSERVATIONS (CONT’D)

e Uncorrelated noise: R = oI
%= (H H)"'H!'z

COV (%Xrs) = c*(H H)!
* H™H is symmetric
e => (H™H)Q = QA — Eigen decomposition of H'H
(H'H) = QAQ', Q'Q=QQ"=1, A=Diag(A, A, ... \,)
(HTH) -1 — A 1QT
e =>tr[COV(X; )] = tr[oc?(H™H)?) = cztr[QA'lQT] = 0%tr[Q"QAY]
= 0%tr[A] = 02} u

* If H™H is nearly singular, then A is close to 0. => COV(X, ) is large



OBSERVATIONS (CONT’D)

 Estimation of 0% : Let R = 0 |
* Define the residue e (error in the estimate)

e—=z—2 = z— Hxs
(I— Pz
= (I-P)Hx+v) [(I-P)H=(H-PH)=H-H=0]
(I—P)v.

Fle)=FE[(I—P)vl=(1I1—-P)E(v) = 0.



OBSERVATIONS (CONT’D)

 Estimation of o (cont’d)

EjeTe) = ENT(I-P)HI—-P)v]
= E[NT(I—-P)v] ((I — P) is idempotent)
= E[r(vT(I—-P)v)] (tr{a) = a for scalar a)
= Er{(vvi(I—-P))] (tr(ABC) = tr{iCBA))
— a2tr(I — P) PE Rmxm, HTH € RNxn
= o2[tr(T) — tr(P)] [tr[P] = tr[H(H'H)*H'] = tr[(H'H)(HTH)] = tr(l]]
= o?(m —n)
el e

is an unbiased estimate of o2




BLUE ( BEST LINEAR UNBIASED ESTIMATE)

BLUE

7Z - Unblased Z - Linear



GAUSS-MARKOV THEOREM:
OPTIMALITY OF LEAST SQUARES VERSION I

* Let x be the unknown being estimated, X € R"

* Pick p and define ®(x) = u'x, u € R"

e Consider the problem of estimating ®(x)

* We are seeking a linear for O(x)

* z is the data and let a'z be an estimator for ®(x), Z € R™, a € R™

E[a"z] = E[a"(Hx+V)] = aTHE(x) + a"E(v) = a"Hx



GAUSS-MARKOV THEOREM (CONT’D)

«=>1)a'zis unbiased only if
« O(x) =u'x=E(a’'z) = a’Hx
e=>pn'=3a"H or Hfa=p
 2)Sinceitis , M.S.E. = variance

evar(a'z) = E[ a'z— E(a'z)]?
= E[ a'(Hx+v) — aTHx]?
= E[aTV]?
=a'E(vv' )a
= a'Ra



GAUSS-MARKOV THEOREM (CONT’D)

* Seek to minimize a'lRa when H'a =
L(a, A) =a'Ra —A"(H'a — ), Lagrangian, AER"
V.L(a,\)=2Ra—-HA=0
V,L@a,A\)=H'a—p=0
~a=%RHA),Ha=p

%(HTRIH) A =
A = 2[HTRH] W

a = RIH(HTRH) 1y



GAUSS-MARKOV THEOREM (CONT’D)

e .. Linear, unbiased minimum variance estimate of @(x) = u'x is
a'z = T (H'RIH)IHTR 1z = uT X, o

Least squares estimate

e o If u=(1,0,....,0)7
* => isthe best estimate of x, and so on.



NOTE

* If vis N(O,R), then )?LS is the best among all estimators - Rao-Blackwell
Theorem.

 |If vis not Gaussian, there exists non-linear estimates who’s variance is
smaller than linear estimate.
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