

Module – 6.2

STATISTICAL LEAST SQUARES

S. Lakshmivarahan

School of Computer Science

University of Oklahoma

Norman, Ok – 73069, USA

varahan@ou.edu

STATISTICAL LEAST SQUARE ESTIMATE

- Given $z = Hx + v$, $z \in \mathbb{R}^m$, $x \in \mathbb{R}^n$
 - $E(v) = 0$
 - $E(vv^T) = R$ – known, S.P.D. $\Rightarrow R^{-1}$ information matrix exists
 - x and v are **NOT** correlated
- Define residual $r(x) = z - Hx$
- Weight sum of squared residuals

$$\begin{aligned} f(x) &= \frac{1}{2} \mathbf{r}^T(x) \mathbf{R}^{-1} \mathbf{r}(x) = \frac{1}{2} \|\mathbf{r}(x)\|_{\mathbf{R}^{-1}}^2 \\ &= \frac{1}{2} (z - Hx)^T \mathbf{R}^{-1} (z - Hx) \end{aligned}$$

STATISTICAL LEAST SQUARE ESTIMATE (CONT'D)

- $\nabla f(x) = (H^T R^{-1} H)x - H^T R^{-1} z \rightarrow (1)$
- $\nabla^2 f(x) = H^T R^{-1} H \rightarrow (2)$
- $\hat{x}_{LS} = (H^T R^{-1} H)^{-1} H^T R^{-1} z \rightarrow (3)$

OBSERVATIONS

- Unbiasedness

$$\begin{aligned}\hat{\mathbf{x}}_{LS} &= (\mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{R}^{-1} \mathbf{z} \quad \text{and } \mathbf{Z} = \mathbf{H}\mathbf{x} + \mathbf{V} \\ &= \mathbf{x} + (\mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{R}^{-1} \mathbf{v} \\ E(\hat{\mathbf{x}}_{LS}) &= \mathbf{x} + (\mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{R}^{-1} E(\mathbf{v}) \\ &= \mathbf{x}.\end{aligned}$$

- $\hat{\mathbf{x}}_{LS}$ is unbiased
- Covariance of the estimate

$$\begin{aligned}COV(\hat{\mathbf{x}}_{LS}) &= E[(\hat{\mathbf{x}}_{LS} - \mathbf{x})(\hat{\mathbf{x}}_{LS} - \mathbf{x})^T] \\ &= (\mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{R}^{-1} E(\mathbf{v}\mathbf{v}^T) \mathbf{R}^{-1} \mathbf{H} (\mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1} \\ &= (\mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1} \\ &= [\nabla^2 f(\mathbf{x})]^{-1}.\end{aligned}$$

OBSERVATIONS (CONT'D)

- Relation to Projection

$$\begin{aligned}\hat{\mathbf{z}} &= \mathbf{H}\hat{\mathbf{x}}_{LS} \\ &= \mathbf{H}(\mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{R}^{-1} \mathbf{z} \\ &= \mathbf{P}\mathbf{z} \\ \mathbf{P} &= \mathbf{H}(\mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{R}^{-1}.\end{aligned}$$

- Idempotent: $\mathbf{P}^2 = \mathbf{P}$
- Non-symmetric: $\mathbf{P} \neq \mathbf{P}^T$
- $\Rightarrow \mathbf{P}$ is an oblique projection
- Note: when $\mathbf{R}^{-1} = \mathbf{I}$, $\mathbf{P} = \mathbf{P}^T$ is symmetric (orthogonal projection)

OBSERVATIONS (CONT'D)

- Uncorrelated noise: $\mathbf{R} = \sigma^2 \mathbf{I}$

$$\hat{\mathbf{x}}_{LS} = (\mathbf{H}^T \mathbf{H})^{-1} \mathbf{H}^T \mathbf{z}$$

$$COV(\hat{\mathbf{x}}_{LS}) = \sigma^2 (\mathbf{H}^T \mathbf{H})^{-1}$$

- $\mathbf{H}^T \mathbf{H}$ is symmetric
- $\Rightarrow (\mathbf{H}^T \mathbf{H})\mathbf{Q} = \mathbf{Q}\Lambda$ – Eigen decomposition of $\mathbf{H}^T \mathbf{H}$
 $(\mathbf{H}^T \mathbf{H}) = \mathbf{Q}\Lambda\mathbf{Q}^T, \quad \mathbf{Q}^T\mathbf{Q} = \mathbf{Q}\mathbf{Q}^T = \mathbf{I}, \quad \Lambda = \text{Diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$
 $(\mathbf{H}^T \mathbf{H})^{-1} = \mathbf{Q}\Lambda^{-1}\mathbf{Q}^T$
- $\Rightarrow \text{tr}[\text{COV}(\hat{\mathbf{x}}_{LS})] = \text{tr}[\sigma^2(\mathbf{H}^T \mathbf{H})^{-1}] = \sigma^2 \text{tr}[\mathbf{Q}\Lambda^{-1}\mathbf{Q}^T] = \sigma^2 \text{tr}[\mathbf{Q}^T\mathbf{Q}\Lambda^{-1}]$
 $= \sigma^2 \text{tr}[\Lambda^{-1}] = \sigma^2 \sum_{i=1}^n \frac{1}{\lambda_i}$
- If $\mathbf{H}^T \mathbf{H}$ is nearly singular, then λ_i is close to 0. $\Rightarrow \text{COV}(\hat{\mathbf{x}}_{LS})$ is large

OBSERVATIONS (CONT'D)

- Estimation of σ^2 : Let $R = \sigma^2 I$
 - Define the residue e (error in the estimate)

$$\begin{aligned} e = z - \hat{z} &= z - H\hat{x}_{LS} \\ &= (I - P)z \\ &= (I - P)(Hx + v) \quad [(I - P)H = (H - PH) = H - H = 0] \\ &= (I - P)v, \end{aligned}$$

$$E(e) = E[(I - P)v] = (I - P)E(v) = 0.$$

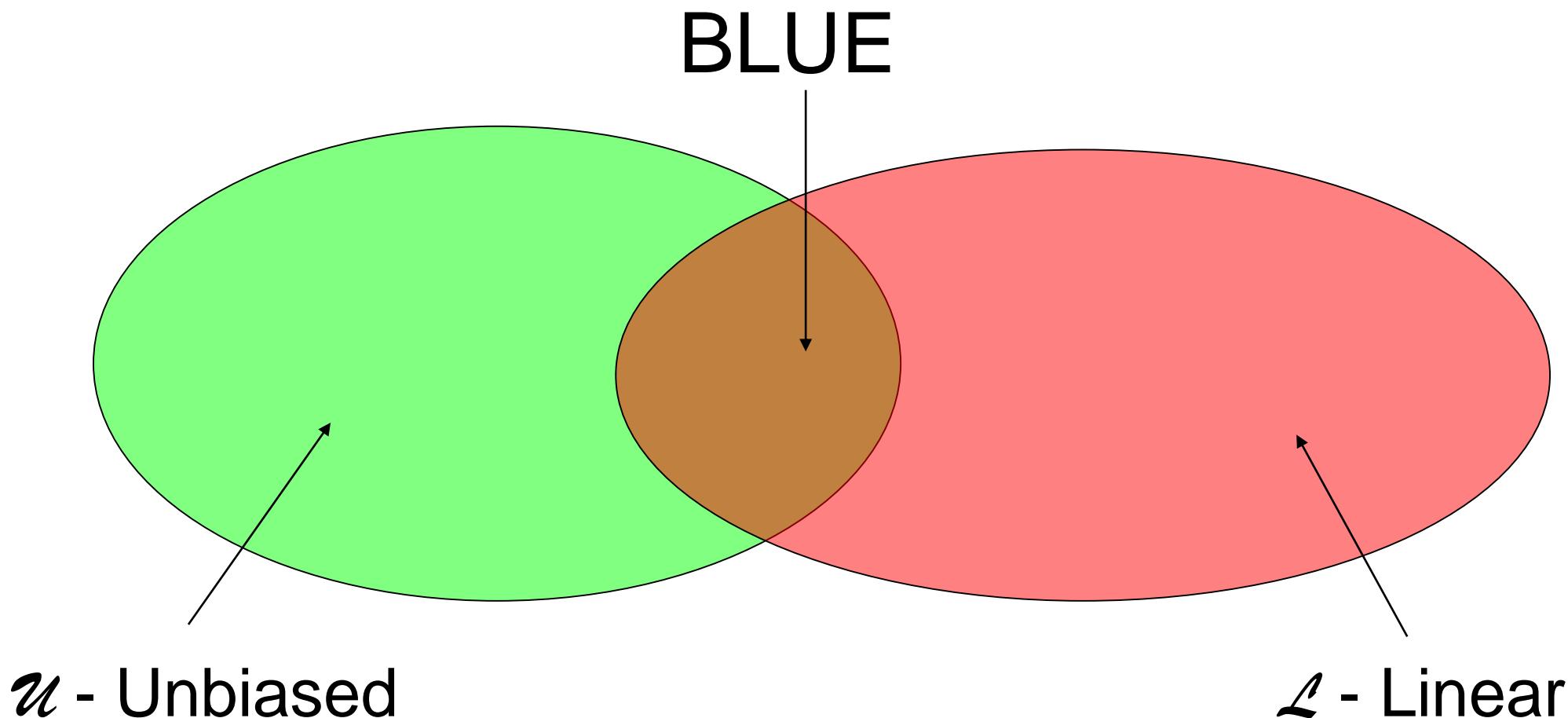
OBSERVATIONS (CONT'D)

- Estimation of σ^2 (cont'd)

$$\begin{aligned} E(\mathbf{e}^T \mathbf{e}) &= E[\mathbf{v}^T (\mathbf{I} - \mathbf{P})(\mathbf{I} - \mathbf{P})\mathbf{v}] \\ &= E[\mathbf{v}^T (\mathbf{I} - \mathbf{P})\mathbf{v}] \quad ((\mathbf{I} - \mathbf{P}) \text{ is idempotent}) \\ &= E[tr(\mathbf{v}^T (\mathbf{I} - \mathbf{P})\mathbf{v})] \quad (tr(a) = a \text{ for scalar } a) \\ &= E[tr(\mathbf{v}\mathbf{v}^T (\mathbf{I} - \mathbf{P}))] \quad (tr(\mathbf{ABC}) = tr(\mathbf{CBA})) \\ &= \sigma^2 tr(\mathbf{I} - \mathbf{P}) \quad \mathbf{P} \in \mathbb{R}^{m \times m}, \mathbf{H}^T \mathbf{H} \in \mathbb{R}^{n \times n} \\ &= \sigma^2 [tr(\mathbf{I}) - tr(\mathbf{P})] \quad [tr[\mathbf{P}] = tr[\mathbf{H}(\mathbf{H}^T \mathbf{H})^{-1} \mathbf{H}^T] = tr[(\mathbf{H}^T \mathbf{H})(\mathbf{H}^T \mathbf{H})^{-1}] = tr[\mathbf{I}]] \\ &= \sigma^2(m - n) \end{aligned}$$

- $\hat{\sigma}^2 = \frac{\mathbf{e}^T \mathbf{e}}{(m - n)}$ is an unbiased estimate of σ^2

BLUE (BEST LINEAR UNBIASED ESTIMATE)



GAUSS-MARKOV THEOREM: OPTIMALITY OF LEAST SQUARES VERSION II

- Let x be the unknown being estimated, $X \in \mathbb{R}^n$
- Pick μ and define $\Phi(x) = \mu^T x$, $\mu \in \mathbb{R}^n$
- Consider the problem of estimating $\Phi(x)$
- We are seeking a linear **unbiased estimate** for $\Phi(x)$
- z is the data and let $a^T z$ be an estimator for $\Phi(x)$, $Z \in \mathbb{R}^m$, $a \in \mathbb{R}^m$

$$E[a^T z] = E[a^T (Hx + v)] = a^T H E(x) + a^T E(v) = a^T H x$$

GAUSS-MARKOV THEOREM (CONT'D)

- => 1) $a^T z$ is unbiased only if
 - $\Phi(x) = \mu^T x = E(a^T z) = a^T H x$
 - => $\mu^T = a^T H$ or $H^T a = \mu$
- 2) Since it is **unbiased**, M.S.E. = variance
 - $\text{var}(a^T z) = E[a^T z - E(a^T z)]^2$
= $E[a^T (Hx+v) - a^T Hx]^2$
= $E[a^T v]^2$
= $a^T E(vv^T) a$
= $a^T R a$

GAUSS-MARKOV THEOREM (CONT'D)

- Seek to minimize $a^T R a$ when $H^T a = \mu$

$$L(a, \lambda) = a^T R a - \lambda^T (H^T a - \mu), \text{ Lagrangian, } \lambda \in \mathbb{R}^n$$

$$\nabla_a L(a, \lambda) = 2R a - H \lambda = 0$$

$$\nabla_\lambda L(a, \lambda) = H^T a - \mu = 0$$

$$\therefore a = \frac{1}{2}(R^{-1}H \lambda), H^T a = \mu$$

$$\frac{1}{2}(H^T R^{-1} H) \lambda = \mu$$

$$\lambda = 2[H^T R^{-1} H]^{-1} \mu$$

$$a = R^{-1} H (H^T R^{-1} H)^{-1} \mu$$

GAUSS-MARKOV THEOREM (CONT'D)

- ∴ Linear, unbiased minimum variance estimate of $\Phi(x) = \mu^T x$ is

$$a^T z = \mu^T (H^T R^{-1} H)^{-1} H^T R^{-1} z = \mu^T \hat{X}_{LS}$$

Least squares estimate

- ∴ If $\mu = (1, 0, \dots, 0)^T$
- => is the best estimate of x_1 and so on.

NOTE

- If v is $N(0, R)$, then \hat{X}_{LS} is the best among all estimators - Rao-Blackwell Theorem.
- If v is not Gaussian, there exists non-linear estimates who's variance is smaller than linear estimate.

REFERENCES

- J. L. Melsa and D. L. Cohn (1978) Decision and Estimation Theory, *McGraw Hill*
- Also refer to chapter 14 in LLD (2006)