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STATISTICAL LEAST SQUARE ESTIMATE

• Given z = Hx + v, z ∈ Rm, x ∈ Rn

• E(v) = 0

• E(vvT) = R – known, S.P.D. => R-1 information matrix exists

• x and v are NOT correlated

• Define residual r(x) = z – Hx

• Weight sum of squared residuals
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STATISTICAL LEAST SQUARE ESTIMATE (CONT’D)

• ∇f(x) = (HTR-1H)x – HTR-1z    -> (1)

• ∇2f(x) = HTR-1H -> (2)

• -> (3)
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OBSERVATIONS

• Unbiasedness

•  𝑥𝐿𝑆 is unbiased

• Covariance of the estimate
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and Z = Hx + V



OBSERVATIONS (CONT’D)

• Relation to Projection

• Idempotent: P2 = P

• Non-symmetric: P ≠ PT

• => P is an oblique projection

• Note: when R-1 = I, P = PT is symmetric (orthogonal projection)
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OBSERVATIONS (CONT’D)

• Uncorrelated noise:

• HTH is symmetric

• => (HTH)Q = QΛ – Eigen decomposition of HTH

(HTH) = QΛQT,   QTQ = QQT = I, Λ = Diag(λ1, λ2, … λn)

(HTH)-1 = QΛ-1QT

• => tr[COV(  𝑥𝐿𝑆)] = tr[σ2(HTH)-1) = σ2tr[QΛ-1QT] = σ2tr[QTQΛ-1] 

= σ2tr[Λ-1] = σ2 𝑖=1
𝑛 1

𝜆𝑖

• If HTH is nearly singular, then λi is close to 0. => COV(  𝑥𝐿𝑆) is large
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OBSERVATIONS (CONT’D)

• Estimation of σ2  : Let R = σ2 I
• Define the residue e (error in the estimate)
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[(I – P)H = (H – PH) = H – H = 0]



OBSERVATIONS (CONT’D)

• Estimation of σ2 (cont’d)

• is an unbiased estimate of σ2 
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P ∈ Rmxm, HTH ∈ Rnxn

[tr[P] = tr[H(HTH)-1HT] = tr[(HTH)(HTH)-1] = tr[I]]



BLUE ( BEST LINEAR UNBIASED ESTIMATE)

L - LinearU - Unbiased

BLUE
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GAUSS-MARKOV THEOREM:
OPTIMALITY OF LEAST SQUARES VERSION II

• Let x be the unknown being estimated, X ∈ Rn

• Pick μ and define  Φ(x) = μTx, μ ∈ Rn

• Consider the problem of estimating Φ(x)

• We are seeking a linear unbiased estimate for Φ(x)

• z is the data and let aTz be an estimator for Φ(x), Z ∈ Rm, a ∈ Rm

E[aTz] = E[aT(Hx+v)] = aTHE(x) + aTE(v) = aTHx
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GAUSS-MARKOV THEOREM (CONT’D)

•=> 1) aTz is unbiased only if
• Φ(x) = μTx = E(aTz) = aTHx
• => μT = aTH or    HTa = μ

• 2) Since it is unbiased, M.S.E. = variance
• var(aTz) = E[ aTz – E(aTz)]2

= E[ aT(Hx+v) – aTHx]2

= E[aTv]2

= aTE(vvT )a
= aTRa
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GAUSS-MARKOV THEOREM (CONT’D)

• Seek to minimize aTRa when HTa = μ

L(a, λ) = aTRa – λT(HTa – μ), Lagrangian, λ∈Rn

∇aL(a, λ) = 2Ra – Hλ = 0

∇ λ L(a, λ) = HTa – μ = 0

∴ a = ½(R-1H λ), HTa = μ

½(HTR-1H) λ = μ

λ = 2[HTR-1H]-1μ

a = R-1H(HTR-1H)-1μ
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GAUSS-MARKOV THEOREM (CONT’D)

• ∴ Linear, unbiased minimum variance estimate of Φ(x) = μTx is

aTz = μT (HTR-1H)-1HTR-1z = 𝜇𝑇  𝑋𝐿𝑆

• ∴ If μ=(1,0,….,0)T

• =>      is the best estimate of x1 and so on.
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Least squares estimate



NOTE

• If v is N(0,R), then  𝑋𝐿𝑆 is the best among all estimators - Rao-Blackwell 
Theorem. 

• If v is not Gaussian, there exists non-linear estimates who’s variance is 
smaller than linear estimate.
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