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ESTIMATION PROBLEM

• x ∈ Rn is the unknown to be estimated – “state” / “true state”

• x is not directly observable but a function of x is.
• i.e.,

• z is called observation )(xhz 

h
x z

Rn Rm
 h – measurement system 

 h – linear   z = Hx

 h – nonlinear
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PROBLEM: KNOWING Z, FIND THE BEST ESTIMATE  𝐗 OF X

• z is modeled by z = h(x) + v
• x and v are not correlated

• v : noise v ~ N(0,R), E(v) = 0, E(vTv) = R

Model for x

• Fisher

• x is a constant, μ 

• Max. likelihood

• Point estimation

• Bayesian

• x is random with prior distribution

• Given z, obtain a posterior distribution

• E(x) = μ
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• Given h(·), z, assumptions about x and v

• Let Φ:Rm
 Rn where  𝑥 = Φ(z)

• Φ(·) called estimator

• Example: Given the reflectivity, find the rain

• Since z is random, so is  𝑥

• Goal: To obtain the probabilistic characterization of the 
estimate

• If Φ(·) is linear =>  𝑥 is a linear estimate, otherwise, it is 
nonlinear
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TWO APPROACHES

Fisher’s

z = h(x) + v

v ~ N(0,R)

∴ p(z|x) is known

z ~ N( h(x), R)

Bayesian

p(x) – prior given

p(z|x) - conditional distribution known

p(x,z) = p(z|x)p(x) = p(x|z)p(z)

∴

Max. Likelihood  Least Squares
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Note: When p(x|z) is computed, we could this in a variety of ways



PROPERTIES OF ESTIMATES

• Unbiasedness

• Relative Efficiency

• Efficient Estimate

• Consistency

• Sufficiency
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UNBIASEDNESS

• Unbiasedness: Relates to the relative location of the mean of 
p(  𝑥|x) – Sampling distribution

• It stands to reason to expect that:
• E[  𝑥|x] = x if x is a constant

• Ex[E(  𝑥|x)] = E(  𝑥) = E(x) if x is random

• (E(  𝑥) – x) or (E(  𝑥) – E(x) is called the bias
w.r.to prior
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EXAMPLE 13.2.1 (LLD (2006))

Coin Toss

Event     H                                T

Prob.      p                         1-p = q

• Given the results of m (independent) tosses of coin

• E(z) = p, var(z) = pq, z
1 – H  p

0 – T  q
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p –a constant



EXAMPLE 13.2.1 (CONT’D)

• In our notation:
• Zi = p + vi

• vi = (1-p) with prob. p

-p with prob. q

• E(vi) = (1-p)p – p(1-p) = 0
• var(vi) = (1-p)2p + p2(1-p) = pq
• E(zi) = p
• var(zi) = pq
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EXAMPLE 13.2.1 (CONT’D)

• An estimate is the sample mean

=>

• Distribution of  P has mean p and lim
𝑚→∞

var = pq/m = 0

•  P is an unbiased estimate of p 10



EXAMPLE 13.2.1 (CONT’D)

• Why unbiasedness? Consider M.S. error in  X

• Let x be a constant, then

• Since                        is a constant,

• Then 

• M.S.E. = Variance if bias is zero

• Minimizing MSE is equivalent to minimizing Variance
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(B) RELATIVE EFFICIENCY

• Let  𝑋𝑎 and  𝑋𝑏 be two estimates of the unknown x. We say  𝑋𝑎 is more efficient
than  𝑋𝑏 if

• The ratio                    is the relative efficiency

• Example: Coin tossing  𝑋𝑎 =  𝑃 ,  𝑋𝑎 = zi

var(  𝑃) = pq/m <  var(zi) = pq

=> Mean is more efficient than a single realization
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(B) RELATIVE EFFICIENCY (CONT’D)

• Question 1: Is there a most efficient estimate?
• YES. This is obtained using maximum likelihood estimate which we 

will see in a future class

• Question 2: Could it happen that a biased estimate may be 
more efficient than unbiased estimate? – Yes
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(C) CONSISTENCY

•  𝑋 is said to be consistent if                                         as          as

• (ie)  𝑋 converges in probability to x as 
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(D) SUFFICIENCY

• Conditions under which the chosen random sample has enough 
information to obtain the required estimates

• It is more technical – refer to C. R. Rao (1973) Linear Statistical 
Inference and its Applications, Wiley
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EXAMPLE 13.2.2 (LLD (2006))

• zi = μ+vi vi~(0, σ2)  iid ( independent, identically distributed)

• Sample mean:

unbiased

• 𝑍 is consistent since            0 as
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EXAMPLE 13.2.2 (CONT’D)
ESTIMATE σ2

• μ is known

- unbiased  -> (2)

- consistent         -> (3)
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EXAMPLE 13.2.2 (CONT’D)
ESTIMATE σ2

• μ is not known - 𝑍 is used in place of μ

s2 = 
1

𝑚
 𝑚=1
𝑚 (𝑧𝑖 − 𝑧)2 , 𝐸 𝑧𝑖

2 = 𝜎2 + 𝜇2, 𝐸 𝑧
2

= 𝑣𝑎𝑟 𝑧 +[𝐸 𝑧 ]2 ->(4)

E(s2) = 
1

𝑚
𝑚𝜎2 +𝑚𝜇2 − 𝜎2 −𝑚𝜇2 =

𝜎2

𝑚
+ 𝜇2 -> (5)

• => s2 is biased with bias = E(s2) - 𝜎2 = -
𝜎2

𝑚

• VAR(s2) = 
2(𝑚 −1)𝜎4

𝑚2 -> (6)
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EXAMPLE 13.2.2 (CONT’D)
ESTIMATE σ2

• Since

s2 is more efficient than  𝜎2
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-> (7)



EXERCISES

• Verify the relations (1) through (7)
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