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ESTIMATION PROBLEM

e X E R"is the to be estimated — “state” / “true state”
° X is but a function of x is.

* j.e.,

* zis called observation z = h(x)

R" R™ ® h — measurement system

® h—linear z=Hx

® h — nonlinear



PROBLEM: KNOWING Z, FIND THE BEST ESTIMATE X OF X

e zismodeled by z=h(x) + v
 x and v are not correlated
* v:noisev ~ N(O,R), E(v) =0, E(v'v) =R

Model for x
* Fisher e Bayesian
® X iS a constant, u e X is random with prior distribution
e Max. likelihood e Given z, obtain a posterior distribution

e Point estimation e E(x) =



* Given h(+), z, assumptions about x and v

* Let ®:R™> R" where X = ®O(z)
* O(-) called estimator

* Example: Given the reflectivity, find the rain
* Since z is , SO S X

* Goal: To obtain the probabilistic characterization of the
estimate

o If () islinear=>Xis a , otherwise, it is



TWO APPROACHES

/\

Fisher’s Bayesian
z=h(x)+v p(x) — prior given
v~ N(O,R) p(z|x) - conditional distribution known

p(x,z) = p(z|x)p(x) = p(x|z)p(z)
(xlz) — plz[x)p(x)  plzlx)p(x)
z ~ N( h(x), R) Pl o plz) T p(x,z)dx

— 2

ikeli i el Vool
Max. Likelihood Least Squares J oo Pl2ZIX)p(x)dx

=~ p(z]x) is known

Note: When p(x|z) is computed, we could this in a variety of ways



PROPERTIES OF ESTIMATES

* Unbiasedness
 Relative Efficiency
* Efficient Estimate
* Consistency

e Sufficiency



UNBIASEDNESS

* Unbiasedness: Relates to the relative location of the mean of
p(x|x) — Sampling distribution
* |t stands to reason to expect that:
e E[X|x] = x if x is a constant
* E [E(X]|x)] = E(X) = E(x) if x is random

T

w.r.to prior

* (E(X) — x) or (E(X) — E(x) is called the bias



EXAMPLE 13.2.1 (LLD (2006))

Coin Toss

Event T lT p —a constant
Prob. p 1-p=q

e Given the results of m (independent) tosses of coin
* E(z) = p, var(z) = pq,



EXAMPLE 13.2.1 (CONT’D)

°ln our notation:

*Li=pty
°V. = (1-p) with prob. p
-p with prob. g

*E(v;) =(1-p)p—p(1-p)=0
*var(v;) = (1-p)?p + p*(1-p) = pg
° E(Zi) =p

*var(z) = pq



EXAMPLE 13.2.1 (CONT’D)

e
. : . 1
* An estimate is the sample mean p=— E =
i
—
1 ¥re
=> _EI'- 1 = — f_‘,- _'_“_'-:I =
L) - iE_l i i P>
1 e
VAR(p) = E|— E 2 — pl°
) [f.i'.? — i F]
1 (ErS
7 2
= —3 E E(zi —p)
i=1
L ey

T
e Distribution of P has mean p and lim var = pg/m =0
M —>00

e Pis an unbiased estimate of p



EXAMPLE 13.2.1 (CONT’D)

« Why unbiasedness? Consider M.S. error in X
* Let x be a constant, then

= E(x—Ex))?+ E(E(x)—x)?
F2E((x — E(%))(E(%) — x)]

e Since (E(x) — x) is a constant, 2[E(x) —x][E(x) — F(x)] =0
* Then MSE(x) = E(x — x)? = VAR(x) + [Bias(x)]?

* M.S.E. = Variance if bias is zero

* Minimizing MSE is equivalent to minimizing Variance



(B) RELATIVE EFFICIENCY

* Let )?aAand X, be two estimates of the unknown x. We say X is
than X, if

VAR(%,) < VAR(,)

VAR(xp)
VAR(Xa) . _
* Example: Coin tossing X, =P , X, =z

* The ratio the relative efficiency

var(P) = pg/m < var(z) = pq
=> Mean is more efficient than a single realization



(B) RELATIVE EFFICIENCY (CONT’D)

e Question 1: Is there a most efficient estimate?
* YES. This is obtained using maximum likelihood estimate which we
will see in a future class

* Question 2: Could it happen that a biased estimate may be
more efficient than unbiased estimate? — Yes



(C) CONSISTENCY

X is said to be consistent if Prob[ |%x — x| >¢€] — 0 as m — o

» (ie) X converges in probability to x as 12 — o



(D) SUFFICIENCY

* Conditions under which the chosen random sample has enough
information to obtain the required estimates

* It is more technical — refer to C. R. Rao (1973) Linear Statistical
Inference and its Applications, Wiley




EXAMPLE 13.2.2 (LLD (2006))

e z=pu+v, Vv.~(0, 0?) iid ( independent, identically distributed)

Sa ple ea [] _‘-" — ;r--lrl -il: -I - .E.-

£ (Z) = & unbiased
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EXAMPLE 13.2.2 (CONT’D)
ESTIMATE o2

* Lis known

1 s >
= E (2 — )
e

- ZE i H =0’ _ unbiased ->(2)

- ?’-.r:r*
VAR(6%) = =— -consistent  ->(3)
Tre



EXAMPLE 13.2.2 (CONT’D)
ESTIMATE o2

* Lis not known - 7 is used in place of u
2= Y™ (z; —2)?, E(22) = 02 + 1, E (Z°) = var@) +[E@]? ->(4)

m

o | 2
m+u -> (5)
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« => 52 js biased with bias = E(s2) - g% = '%

2(m —-1)c*
m2

e VAR(s2) =

-> (6)



EXAMPLE 13.2.2 (CONT’D)

ESTIMATE o°
204 20t m — 1

* Since VAR(o?) = > ( 12 = VAR(s%) ->(7)

T . — 1 T

s2 is more efficient than 62



EXERCISES

 Verify the relations (1) through (7)
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