

Module – 6.1

STATISTICAL ESTIMATION

S. Lakshmivarahan

School of Computer Science

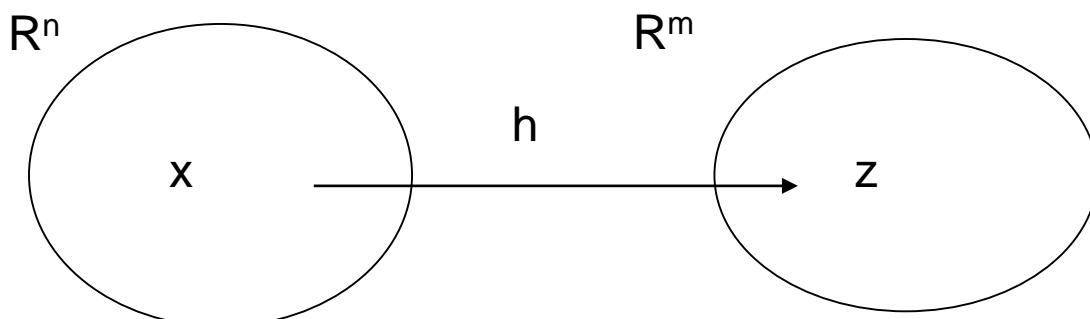
University of Oklahoma

Norman, Ok – 73069, USA

varahan@ou.edu

ESTIMATION PROBLEM

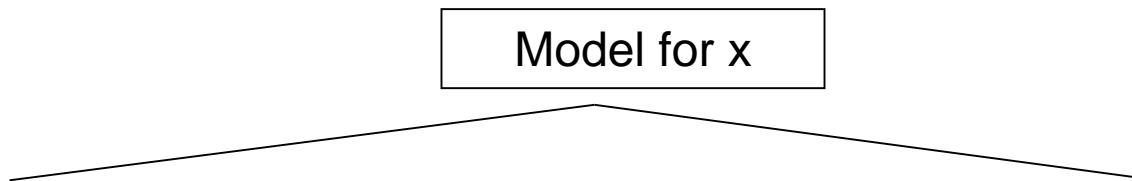
- $x \in \mathbb{R}^n$ is the **unknown** to be estimated – “state” / “true state”
- x is **not directly observable** but a function of x is.
 - i.e.,
- z is called observation $z = h(x)$



- h – measurement system
- h – linear $z = Hx$
- h – nonlinear

PROBLEM: KNOWING Z, FIND THE BEST ESTIMATE \hat{x} OF X

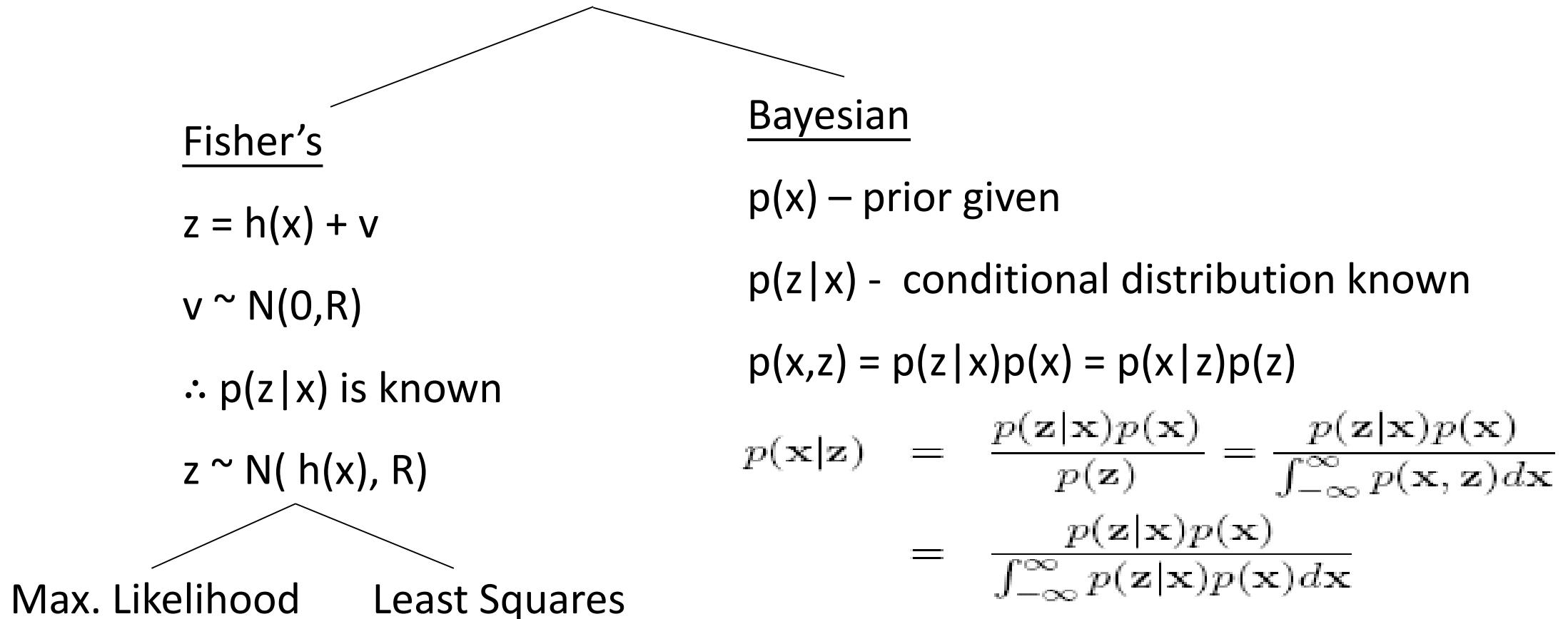
- z is modeled by $z = h(x) + v$
 - x and v are not correlated
 - v : noise $v \sim N(0, R)$, $E(v) = 0$, $E(v^T v) = R$



- | | |
|--------------------------|--|
| • <u>Fisher</u> | • <u>Bayesian</u> |
| • x is a constant, μ | • x is random with prior distribution |
| • Max. likelihood | • Given z, obtain a posterior distribution |
| • Point estimation | • $E(x) = \mu$ |

-
- Given $h(\cdot)$, z , assumptions about x and v
 - Let $\Phi: R^m \rightarrow R^n$ where $\hat{x} = \Phi(z)$
 - $\Phi(\cdot)$ called estimator
 - Example: Given the reflectivity, find the rain
 - Since z is **random**, so is \hat{x}
 - Goal: To obtain the probabilistic characterization of the estimate
 - If $\Phi(\cdot)$ is linear $\Rightarrow \hat{x}$ is a **linear estimate**, otherwise, it is **nonlinear**

TWO APPROACHES



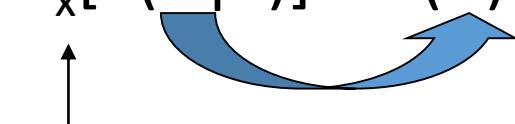
Note: When $p(x|z)$ is computed, we could this in a variety of ways

PROPERTIES OF ESTIMATES

- Unbiasedness
- Relative Efficiency
- Efficient Estimate
- Consistency
- Sufficiency

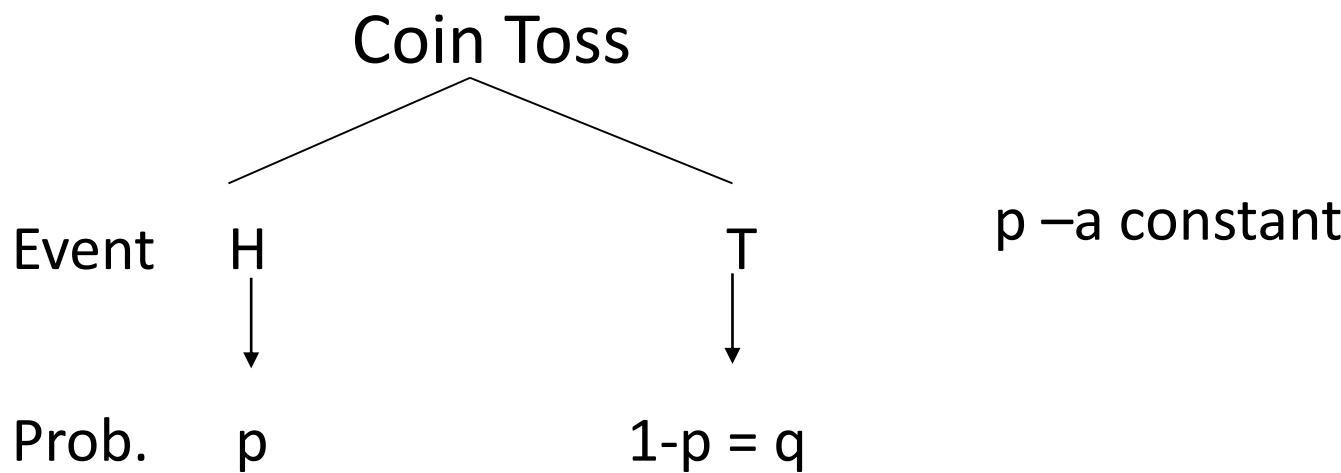
UNBIASEDNESS

- Unbiasedness: Relates to the relative location of the mean of $p(\hat{x}|x)$ – Sampling distribution
- It stands to reason to expect that:
 - $E[\hat{x}|x] = x$ if x is a constant
 - $E_x[E(\hat{x}|x)] = E(\hat{x}) = E(x)$ if x is random
- $(E(\hat{x}) - x)$ or $(E(\hat{x}) - E(x))$ is called the bias



w.r.to prior

EXAMPLE 13.2.1 (LLD (2006))



- Given the results of m (independent) tosses of coin
- $E(z) = p$, $\text{var}(z) = pq$, $Z \begin{cases} \rightarrow 1 - H \rightarrow p \\ \rightarrow 0 - T \rightarrow q \end{cases}$

EXAMPLE 13.2.1 (CONT'D)

- In our notation:
 - $Z_i = p + v_i$
 - $v_i = (1-p)$ with prob. p
 $-p$ with prob. q
 - $E(v_i) = (1-p)p - p(1-p) = 0$
 - $\text{var}(v_i) = (1-p)^2p + p^2(1-p) = pq$
 - $E(z_i) = p$
 - $\text{var}(z_i) = pq$

EXAMPLE 13.2.1 (CONT'D)

- An estimate is the sample mean

$$\hat{p} = \frac{1}{m} \sum_{i=1}^m z_i.$$

$$\Rightarrow E(\hat{p}) = \frac{1}{m} \sum_{i=1}^m E(z_i) = p$$

$$\begin{aligned} VAR(\hat{p}) &= E\left[\frac{1}{m} \sum_{i=1}^m z_i - p\right]^2 \\ &= \frac{1}{m^2} \sum_{i=1}^m E(z_i - p)^2 \\ &= \frac{pq}{m} \end{aligned}$$

- Distribution of \hat{P} has mean p and $\lim_{m \rightarrow \infty} \text{var} = pq/m = 0$
- \hat{P} is an unbiased estimate of p

EXAMPLE 13.2.1 (CONT'D)

- Why unbiasedness? Consider M.S. error in \hat{X}
- Let x be a constant, then

$$\begin{aligned} E(\hat{x} - x)^2 &= E[\hat{x} - E(\hat{x}) + E(\hat{x}) - x]^2 \\ &= E(\hat{x} - E(\hat{x}))^2 + E(E(\hat{x}) - x)^2 \\ &\quad + 2E[(\hat{x} - E(\hat{x}))(E(\hat{x}) - x)] \end{aligned}$$

- Since $(E(\hat{x}) - x)$ is a constant, $2[E(\hat{x}) - x][E(\hat{x}) - E(\hat{x})] = 0$
- Then $MSE(\hat{x}) = E(\hat{x} - x)^2 = VAR(\hat{x}) + [Bias(\hat{x})]^2$
- M.S.E. = Variance if bias is zero
- Minimizing MSE is equivalent to minimizing Variance

(B) RELATIVE EFFICIENCY

- Let \hat{X}_a and \hat{X}_b be two estimates of the unknown x . We say \hat{X}_a is **more efficient** than \hat{X}_b if

$$VAR(\hat{x}_a) \leq VAR(\hat{x}_b)$$

- The ratio $\frac{VAR(\hat{x}_b)}{VAR(\hat{x}_a)}$ the relative efficiency
- Example: Coin tossing $\hat{X}_a = \hat{P}$, $\hat{X}_a = z_i$
 $\text{var}(\hat{P}) = pq/m < \text{var}(z_i) = pq$
 \Rightarrow Mean is more efficient than a single realization

(B) RELATIVE EFFICIENCY (CONT'D)

- Question 1: Is there a most efficient estimate?
 - YES. This is obtained using maximum likelihood estimate which we will see in a future class
- Question 2: Could it happen that a biased estimate may be more efficient than unbiased estimate? – Yes

(C) CONSISTENCY

- \hat{X} is said to be consistent if $\text{Prob}[\ |\hat{x} - x| > \epsilon] \rightarrow 0$ as $m \rightarrow \infty$
- (ie) \hat{X} converges in probability to x as $m \rightarrow \infty$

(D) SUFFICIENCY

- Conditions under which the chosen random sample has enough information to obtain the required estimates
- It is more technical – refer to C. R. Rao (1973) Linear Statistical Inference and its Applications, Wiley

EXAMPLE 13.2.2 (LLD (2006))

- $z_i = \mu + v_i \quad v_i \sim (0, \sigma^2) \text{ iid (independent, identically distributed)}$
- Sample mean: $\bar{z} = \frac{1}{m} \sum_{i=1}^m z_i$

$$E(\bar{z}) = \mu \text{ unbiased}$$

$$VAR(\bar{z}) = VAR\left(\frac{1}{m} \sum_{i=1}^m z_i\right) = E\left[\frac{1}{m} \sum_{i=1}^m (z_i - \mu)\right]^2 = \frac{\sigma^2}{m}$$

- \bar{Z} is consistent since $\frac{\sigma^2}{m} \rightarrow 0$ as $m \rightarrow \infty$

EXAMPLE 13.2.2 (CONT'D) ESTIMATE σ^2

- μ is known

$$\hat{\sigma}^2 = \frac{1}{m} \sum_{i=1}^m (z_i - \mu)^2$$

$$E(\hat{\sigma}^2) = \frac{1}{m} \sum_{i=1}^m E(z_i - \mu)^2 = \sigma^2 \quad - \text{unbiased} \rightarrow (2)$$

$$VAR(\hat{\sigma}^2) = \frac{2\sigma^4}{m} \quad - \text{consistent} \quad \rightarrow (3)$$

EXAMPLE 13.2.2 (CONT'D) ESTIMATE σ^2

- μ is not known - \bar{Z} is used in place of μ

$$s^2 = \frac{1}{m} \sum_{i=1}^m (z_i - \bar{z})^2, E(z_i^2) = \sigma^2 + \mu^2, E(\bar{z}^2) = \text{var}(\bar{z}) + [E(\bar{z})]^2 \rightarrow (4)$$

$$E(s^2) = \frac{1}{m} [m\sigma^2 + m\mu^2 - \sigma^2 - m\mu^2] = \frac{\sigma^2}{m} + \mu^2 \rightarrow (5)$$

- $\Rightarrow s^2$ is biased with bias = $E(s^2) - \sigma^2 = \frac{\sigma^2}{m}$
- $\text{VAR}(s^2) = \frac{2(m-1)\sigma^4}{m^2} \rightarrow (6)$

EXAMPLE 13.2.2 (CONT'D)

ESTIMATE σ^2

- Since $VAR(\sigma^2) = \frac{2\sigma^4}{m} > \frac{2\sigma^4}{m-1} \left(\frac{m-1}{m}\right)^2 = VAR(s^2)$ $\rightarrow (7)$

s^2 is more efficient than $\hat{\sigma}^2$

EXERCISES

- Verify the relations (1) through (7)

REFERENCES

- J. L. Melsa and D. L. Cohn (1978) Decision and Estimation Theory, McGraw Hill
- A. P. Sage and J. L. Melsa (1971) Estimation Theory and its Application to Communication and Control, McGraw Hill
- Also refer to Chapter 13 in LLD (2006)