

Module – 4.3

MINIMIZATION ALGORITHM

S. Lakshmivarahan

School of Computer Science

University of Oklahoma

Norman, Ok – 73069, USA

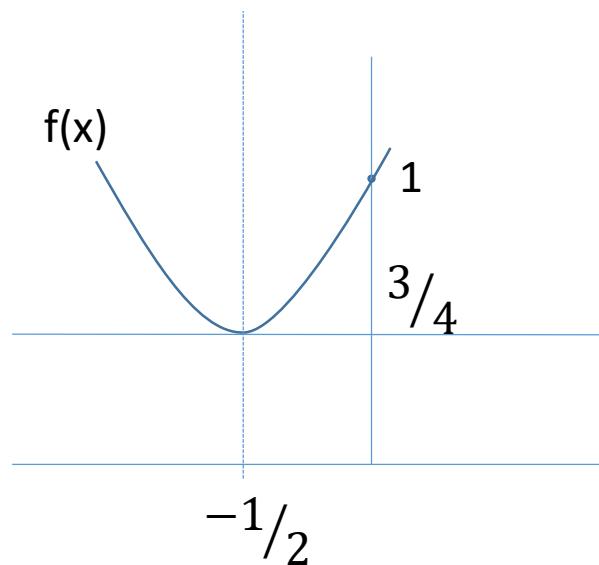
varahan@ou.edu

MINIMIZATION PROBLEM – 1D

- $f: \mathbb{R} \rightarrow \mathbb{R}$, be a Convex function
- Example: $f(x) = ax^2 + bx + c$ with $a > 0$
- Rewrite: $f(x) = a[x + \frac{b}{2a}]^2 - (\frac{b^2 - 4ac}{4a})$
- Minimizer $x^* = -\frac{b}{2a}$
- $f(x^*) = -(\frac{b^2 - 4ac}{4a})$
- $f(x)$ is a parabola intersects the x – axis at
$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \text{ only if } b^2 > 4ac$$
- Otherwise, $f(x)$ is above the x-axis

MINIMIZATION PROBLEM – 1D

- $f(x) = x^2 + x + 1 = (x + \frac{1}{2})^2 + \frac{3}{4}$
- $x^* = -\frac{1}{2}$ and $f(x^*) = \frac{3}{4}$
- Since $b^2 < 4ac$, $x_{1,2}$ are complex and $f(x)$ lies above the x – axis

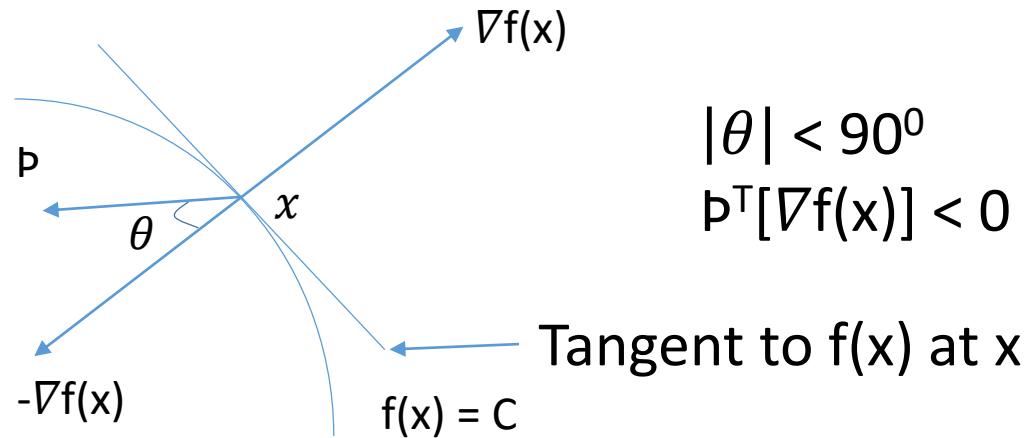


GENERALIZATION – n – DIMENSION

- $f: \mathbb{R}^n \rightarrow \mathbb{R}$ be Convex in \mathbb{R}^n
- Example: $f(x) = \frac{1}{2}x^T Ax - b^T x + c$, A – SPD
- $\nabla f(x) = Ax - b = 0 \Rightarrow x^* = A^{-1}b$, minimizer of $f(x)$
- $f(x^*) = \frac{2c - b^T A^{-1}b}{2}$, minimum value of $f(x)$
- Instead of solving $Ax = b$, we seek to minimize $f(x)$ interatively

A DESCENT DIRECTION

- At any point $x \in \mathbb{R}^n$, $\nabla f(x)$ denotes the direction of maximum rate of increase



- Since $p^T[\nabla f(x)] < 0$, p is called the descent direction
- $f(x)$ must decrease as we move a small distance along p away from x

STEEPEST DESCENT DIRECTION

- Let $\alpha > 0$ be a small real number
- Expand $f(x + \alpha p)$ in first order Taylor series

$$f(x + \alpha p) \approx f(x) + \alpha p^T [\nabla f(x)]$$

$< f(x)$ since p is a descent direction

- Setting $p = -\nabla f(x)$, the steepest descent direction:

$$f(x - \alpha \nabla f(x)) \approx f(x) - \alpha \|\nabla f(x)\|^2$$

$< f(x)$

and we get the maximum rate of decrease in $f(x)$ at x

ROLE OF RESIDUAL VECTOR

- x_k be the current operating point
- Residual $r_k = r(x_k) = -\nabla f(x)$
 $= b - Ax_k$
- R_k is the steepest descent direction of $f(x)$ at x_k
- Since $r_k = 0$ when $x_k = x^* = A^{-1}b$, $\|r_k\|$ is a measure of how far x_k is away from the minimum x^*
- $\|r_k\|$ could be used to test convergence of the iterative minimization

STEEPEST DESCENT FRAMEWORK

- Define the new operating points as

$$x_{k+1} = x_k + \alpha r_k$$

- Then: $f(x_{k+1}) < f(x_k)$ but
 $|f(x_{k+1}) - f(x_k)|$ depends on α
- α is called the step length parameter
- At x_k , the direction of search r_k is fixed
- Given x_k and r_k , how to choose α such that we get the maximum decrease in $f(x)$ as we move from x_k to $x_k + \alpha r_k$
- New 1-D minimization problem: minimize $g: \mathbb{R} \rightarrow \mathbb{R}$ where

$$g(\alpha) = f(x_k + \alpha r_k)$$

A DIVIDE AND CONQUER PRINCIPLE

- Given n -dimensional minimization of $f(x)$ is reduced to a sequence of 1-dimensional minimization of $g(\alpha)$ at x_k along the steepest descent direction $r_k = -\nabla f(x_k)$, for $k = 0, 1, 2, \dots$
- This is the basis for the resulting iterative framework for the minimization of $f(x)$

OPTIMAL STEP LENGTH – QUADRATIC PROBLEM

- Let $f(x) = \frac{1}{2}x^T Ax - b^T x + c$, A – SPD
- Set $x_{k+1} = x_k + \alpha r_k$
- $$g(\alpha) = f(x_{k+1}) = f(x_k + \alpha r_k) \\ = f(x_k) + \frac{1}{2}(r_k^T A r_k)\alpha^2 + (r_k^T A x_k - r_k^T b)\alpha$$
- $g(\alpha)$ is quadratic in α
- Setting: $\frac{dg}{d\alpha} = (r_k^T A r_k)\alpha + r_k^T (A x_k - b) = 0$
- Minimizer of $g(\alpha)$ is

$$\alpha_k = -\frac{r_k^T (A x_k - b)}{r_k^T A r_k} = \frac{r_k^T r_k}{r_k^T A r_k} > 0$$

Unless $r_k = 0$

STEEPEST DESCENT/GRADIENT ALGORITHM

- $f(x) = \frac{1}{2}x^T Ax - b^T x + c$, $x_0 \in \mathbb{R}^n$ given

$$r_0 = r(x_0) = Ax_0 - b$$

For $k = 0, 1, 2, \dots$

Step 1 $\alpha_k = \frac{r_k^T r_k}{r_k^T A r_k}$ - optimal step length

Step 2 $x_{k+1} = x_k + \alpha_k r_k$ - iterates

Step 3 Test for convergence. If yes, exit

Step 4 $r_{k+1} = r_k - \alpha_k A r_k$ - residual update

ORTHOGONALITY OF RESIDUALS

- Recall that the residual at x_{k+1} is

$$\begin{aligned}r_{k+1} &= b - Ax_{k+1} \\&= b - A(x_k + \alpha_k r_k) \\&= r_k - \alpha_k Ar_k - \text{The residual update}\end{aligned}$$

- Also $r_k^T r_{k+1} = r_k^T (r_k - \alpha_k Ar_k)$
 $\quad = r_k^T r_k - \alpha_k r_k^T Ar_k$
 $\quad = 0$
- That is, $r_{k+1} \perp r_k$
- Convergence question: When is $\lim_{k \rightarrow \infty} x_k = x^* = A^{-1}b$?

ERROR AND RESIDUAL VECTORS

- Define the error: $e_k = x_k - x^* = x_k - A^{-1}b$
- Then: $Ae_k = Ax_k - b = -r_k$
- r_k is measurable but e_k is not
- e_k is useful in proving convergence of the sequence x_0, x_1, x_2, \dots
- To prove Convergence: show $\lim_{k \rightarrow \infty} e_k = 0$

ENERGY NORM OF THE ERROR e_k

- Define

$$E(x_k) = f(x_k) - f(x^*)$$

- Setting $b = Ax^*$ and simplifying

$$\begin{aligned} E(x_k) &= \frac{1}{2}(x_k - x^*)^T A(x_k - x^*) \\ &= \frac{1}{2} e_k^T A e_k = \frac{1}{2} \|e_k\|_A^2 > 0 \end{aligned}$$

unless $e_k = 0$

- $E(x_k)$ is a measure of how far x_k is from x^*
- Since A is SPD, $E(x_k) = 0$ if and only if $x_k = x^*$

A FRAME WORK FOR CONVERGENCE PROOF

- Evaluate $E(x)$ along the trajectory and prove that $E(x_k)$ is a decreasing function of k
- Since $E(x_k)$ is bounded below by zero, prove that $E(x_k) \rightarrow 0$ as $k \rightarrow \infty$
- This framework is due to A.Lyapunov and has come to be known as the Lyapunov method

A RECURSIVE RELATION FOR $E(x_k)$

- $E(x_{k+1}) = f(x_{k+1}) - f(x^*)$
- Substituting $x_{k+1} = x_k + \alpha_k r_k$ and simplifying with $b = A^{-1}x^*$, it follows:

$$E(x_{k+1}) = \beta_k E(x_k)$$

$$\beta_k = [1 - \frac{(r_k^T r_k)^2}{(r_k^T A r_k)(r_k^T A^{-1} r_k)}]$$

KANTOROVICH INEQUALITY

- Let $A \in \mathbb{R}^n$ be SPD
- Let $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n > 0$ be the eigenvalues of A
- Kantorovich inequality states: for any $y \in \mathbb{R}^n$

$$\frac{(y^T y)^2}{(y^T A y)(y^T A^{-1} y)} \geq 1 - \left[\frac{\lambda_1 - \lambda_n}{\lambda_1 + \lambda_n} \right]^2$$

UPPER BOUND ON β_k : CONDITION NUMBER OF A

- Combining:
- $$\beta_k = \left[1 - \frac{(r_k^T r_k)^2}{(r_k^T A r_k)(r_k^T A^{-1} r_k)} \right] \leq \left[\frac{\lambda_1 - \lambda_n}{\lambda_1 + \lambda_n} \right]^2 = \left[\frac{\frac{\lambda_1 - 1}{\lambda_n}}{\frac{\lambda_1 + 1}{\lambda_n}} \right]^2 = \left[\frac{\mathcal{K}_2(A) - 1}{\mathcal{K}_2(A) + 1} \right]^2 = \beta < 1$$
- $\mathcal{K}_2(A) = \frac{\lambda_1}{\lambda_n}$ = condition number of A
 ≥ 1 when A is SPD

CONVERGENCE OF $E(x_k)$

- Hence

$$E(x_{k+1}) \leq \beta E(x_k) \text{ and } \beta < 1$$

- Iterating

$$E(x_k) \leq \beta^k E(x_0) \rightarrow 0 \text{ as } k \rightarrow \infty$$

- Hence, $\lim_{k \rightarrow \infty} E(x_k) = 0$ and $\lim_{k \rightarrow \infty} x_k = x^*$

SUMMARY – MAIN THEOREM

- If $f(x) = \frac{1}{2}x^T Ax - b^T x + c$, and A is SPD then the gradient algorithm, starting from any x_0 , Converges to the minimum as $k \rightarrow \infty$
- However, the rate of Convergence depends on β which in turn depends only on the condition number $\mathcal{K}_2(A)$ of A and not on n , the dimension of the space

ESTIMATION OF THE NUMBER OF ITERATIONS

- For what value of k :

$$\frac{E(x_k)}{E(x_0)} \leq \beta^k = \varepsilon = 10^{-d}$$

- Solving $\beta^k = 10^{-d} \Rightarrow k^* = \left\lceil \frac{d}{\log_{10} \beta^{-1}} \right\rceil$
- That is, for a given β , in k^* iterations

$$\frac{E(x_k)}{E(x_0)} \leq 10^{-d}$$

DEPENDENCE OF k^* ON β AND $\mathcal{K}_2(A)$

$\mathcal{K}_2(A)$	β	k^*
1	0	-
10	0.66942	40
100	0.960788	403
1000	0.996008	4030
10^4	0.9996	40288

EXAMPLE IN \mathbb{R}^2

- Consider $A = \begin{bmatrix} 1 & 0 \\ 0 & \lambda \end{bmatrix}$, with $\lambda \geq 1$
- $f(x) = \frac{1}{2}x^T Ax = \frac{1}{2}(x_1^2 + \lambda x_2^2)$
$$= \frac{x_1^2}{(\sqrt{2})^2} + \frac{x_2^2}{(\sqrt{2\lambda})^2}$$
- The minimum of $f(x)$ occurs at $x^* = (0, 0)^T$
- $\nabla f(x) = Ax = (x_1, \lambda x_2)^T = -r(x)$
- Set $x_0 = (\lambda, 1)^T$
- Verify $\alpha_0 = \frac{r_0^T r_0}{r_0^T A r_0} = \frac{2}{1+\lambda}$
- $x_1 = x_0 + \alpha_0 r_0 = \frac{\lambda-1}{\lambda+1} \begin{bmatrix} \lambda \\ -1 \end{bmatrix}$

EXAMPLE IN \mathbb{R}^2 - CONTINUED

- Continuing

$$x_k = \left(\frac{\lambda-1}{\lambda+1} \right)^k \begin{bmatrix} \lambda \\ (-1)^k \end{bmatrix} \rightarrow 0 \text{ as } k \rightarrow \infty$$

- When $\lambda = 4$, $x_k = (0.6)^k \begin{bmatrix} 4 \\ (-1)^k \end{bmatrix}$
- Zig-Zag behavior: Iterates x_0, x_1, x_2, \dots exhibit oscillatory behavior which slows the convergence

1-D SEARCH – GENERAL CASE

- Given an operating point x , a descent direction \mathbf{p} , the optimal step length α is obtained by minimizing

$$g(\alpha) = f(x + \alpha\mathbf{p})$$

- Solve

$$\frac{dg}{d\alpha} = [\nabla f(x + \alpha\mathbf{p})]^T \mathbf{p} = 0 \quad \rightarrow (*)$$

- When f is quadratic $\Rightarrow g$ is quadratic and $(*)$ is linear in α
- When f is not quadratic, $(*)$ can be solved only numerically

QUADRATIC APPROXIMATION TO $g(\alpha)$

- Compute the following values of $g(\alpha)$:

$$g(0) = f(x)$$

$$g(1) = f(x + p)$$

$$\frac{dg(0)}{d\alpha} = [\nabla f(x)]^T p$$

- Let $m(\alpha) = a\alpha^2 + b\alpha + c$ be a quadratic approximation to $g(\alpha)$

QUADRATIC APPROXIMATION TO $g(\alpha)$

- Set $m(0) = g(0) = c$

$$m(1) = g(1) = a + b + c$$

$$m'(0) = \frac{dm(\alpha)}{d\alpha} \Big|_{\alpha=0} = \frac{dg(\alpha)}{d\alpha} \Big|_{\alpha=0} = (2a\alpha + b) \Big|_{\alpha=0} = b$$

- Hence $a = g(1) - g(0) - g'(0)$

$$b = g'(0)$$

$$c = g(0)$$

- Setting $\frac{dm(\alpha)}{d\alpha} = 0 \Rightarrow$ optimal step length

$$\alpha = -\frac{b}{2a} = \frac{g'(0)}{2[g(1)-g(0)-g'(0)]}$$

A LOOK BACK

- Gradient method Converges only asymptotically even for Quadratic functions
- Is finite time Convergence feasible at least theoretically?
- The conjugate direction/conjugate gradient methods can in principle achieve this goal for Quadratic functional

A-CONJUGATE VECTORS

- Let $A \in \mathbb{R}^{n \times n}$ be SPD
- $S = \{\mathbf{p}_0, \mathbf{p}_1, \dots, \mathbf{p}_{n-1}\}$ be a set of n non-null vectors in \mathbb{R}^n
- This set is mutually A-Conjugate if

$$\begin{aligned}\mathbf{p}_i^T A \mathbf{p}_j &= 0 \text{ for } i \neq j \\ &\neq 0 \text{ for } i = j\end{aligned}$$

- Extension of the notion of orthogonality
- Claim: if a set S of vectors are A-Conjugate then they are also linearly independent

CONJUGATE VECTORS AS A BASIS FOR \mathbb{R}^n

- Let $x_0 \in \mathbb{R}^n$ be a fixed vector in \mathbb{R}^n
- For any $x \in \mathbb{R}^n$:

$$x - x_0 = \alpha_0 p_0 + \alpha_1 p_1 + \dots + \alpha_{n-1} p_{n-1}$$

- By A-Conjugacy

$$p_k^T A (x - x_0) = \sum_{j=0}^{n-1} \alpha_j p_k^T A p_j = \alpha_k p_k^T A p_k$$

$$\alpha_k = \frac{p_k^T A (x - x_0)}{p_k^T A p_k}, \quad 0 \leq k \leq n - 1$$

SOLUTION OF $Ax = b$ USING CONJUGATE VECTORS

- Let $x^* \in \mathbb{R}^n$ be the solution of the linear system $Ax = b$ where A is SPD
- Let $S = \{\mathbf{p}_0, \mathbf{p}_1, \dots, \mathbf{p}_{n-1}\}$ be A – Conjugate
- If x_0 is an initial guess, then

$$A(x^* - x_0) = b - Ax_0 = r_0$$

Is the residual at x_0

- Then

$$x^* = x_0 + \sum_{j=0}^{n-1} \alpha_j \mathbf{p}_j$$
$$\alpha_k = \frac{\mathbf{p}_k^T A(x^* - x_0)}{\mathbf{p}_k^T A \mathbf{p}_k} = \frac{\mathbf{p}_k^T A r_0}{\mathbf{p}_k^T A \mathbf{p}_k}$$

QUADRATIC MINIMIZATION

- Let $A \in \mathbb{R}^{n \times n}$ be SPD, $b \in \mathbb{R}^n$, $c \in \mathbb{R}$
- Consider $f(x) = \frac{1}{2}x^T Ax - b^T x + c$
- Minimizer is the solution of $Ax = b$
- Given $Ax = b$, $r(x) = b - Ax$
- Minimize $f(x) = \frac{1}{2}r(x)^T r(x) = \frac{1}{2}(b - Ax)^T(b - Ax)$
$$= \frac{1}{2}b^T b - b^T Ax + \frac{1}{2}x^T (A^T A)x$$
- $\nabla f(x) = (A^T A)x - A^T b = 0 \Rightarrow Ax = b$ if A is SPD

LINEAR TRANSFORMATION – CONJUGATE BASIS

- Define $P = [p_0, p_1, \dots, p_{n-1}] \in \mathbb{R}^{n \times n}$

- $P^T A P = \begin{bmatrix} p_0^T \\ p_1^T \\ \vdots \\ p_{n-1}^T \end{bmatrix} A [p_0, p_1, \dots, p_{n-1}]$
 $= \text{Diag}(d_0, d_1, \dots, d_{n-1}) = D \in \mathbb{R}^{n \times n}$
 $d_i = p_i^T A p_i, 0 \leq i \leq n - 1$

- Let $x = x_0 + P\alpha, \alpha \in \mathbb{R}^n$

DECOMPOSITION OF $f(x)$ IN CONJUGATE BASIS

- Define $(r_0 = b - Ax_0)$, $D = P^TAP$

$$G(\alpha) = f(x) = f(x_0 + P\alpha)$$

$$= \frac{1}{2}(x_0 + P\alpha)^T A(x_0 + P\alpha) - b^T(x_0 + P\alpha)$$

$$= \left(\frac{1}{2}x_0^T A x_0 - b^T x_0\right) + \frac{1}{2}\alpha^T (P^T A P)\alpha - (b - Ax_0)^T P\alpha$$

$$= f(x_0) + \frac{1}{2} \sum_{k=0}^{n-1} \alpha_k^2 d_k - \sum_{k=0}^{n-1} r_0^T p_k \alpha_k$$

$$= f(x_0) + \sum_{k=0}^{n-1} g_k(\alpha)$$

$$g_k(\alpha) = \frac{1}{2}d_k \alpha_k^2 - r_0^T p_k \alpha_k$$

DIVIDE AND CONQUER

- $\min_x f(x) = \min_{\alpha} f(x_0 + \alpha p)$
 $= \min_{\alpha} G(\alpha)$
 $= \min_{\alpha} \{f(x_0) + \sum_{k=0}^{n-1} g_k(\alpha_k)\}$
 $= \sum_{k=0}^{n-1} \min_{\alpha} g_k(\alpha_k) \quad (f(x_0) \text{ a constant})$
 $= \text{Minimization n 1-D problems}$

Since $g_k(\alpha_k)$ depend only on α_k

1-D MINIMIZATION

- Recall: $g_k(\alpha_k) = \frac{1}{2}d_k \alpha_k^2 - r_0^T p_k \alpha_k$

- $\frac{dg_k(\alpha_k)}{d\alpha_k} = d_k \alpha_k - p_k^T r_0 = 0$

- Optimal $\alpha_k = \frac{p_k^T r_0}{d_k}$
 $= \frac{p_k^T (b - Ax_0)}{p_k^T A p_k}$

CONJUGATE DIRECTION – FRAME WORK

- $f(x) = \frac{1}{2}x^T Ax - b^T x, x_0 \in \mathbb{R}^n, r_0 = b - Ax_0$
- Given A-Conjugate set $S = \{p_0, p_1, \dots, p_{n-1}\}$

For $k = 0$ to $n - 1$

Step 1: $\alpha_k = \frac{p_k^T r_k}{p_k^T A p_k}$

Step 2: $x_{k+1} = x_k + \alpha_k p_k$

Step 3: $r_{k+1} = r_k - \alpha_k A p_k$

Step 4: If $r_{k+1} = 0$, then $x^* = x_{k+1}$

VERIFY THE EXPRESSION FOR α_k IN STEP 1

- Given x_k and p_k
- Consider the 1-D minimization of

$$\begin{aligned}g(\alpha) &= f(x_k + \alpha p_k) \\&= \frac{1}{2}(x_k + \alpha p_k)^T A(x_k + \alpha p_k) - b^T(x_k + \alpha p_k) \\&= f(x_k) + \frac{1}{2} (p_k^T A p_k) \alpha^2 - (b - A x_k)^T p_k \alpha\end{aligned}$$

$$\text{Minimizer: } \alpha_k = \frac{(b - A x_k)^T p_k}{p_k^T A p_k} = \frac{p_k^T r_k}{p_k^T A p_k}$$

VERIFY THE EXPRESSION IN STEP 3

- From the step 2:

$$x_{k+1} = x_0 + \alpha_0 p_0 + \alpha_1 p_1 + \dots + \alpha_n p_n$$

$$\bullet r_{k+1} = b - Ax_{k+1}$$

$$= b - Ax_0 - \alpha_0 Ap_0 - \alpha_1 Ap_1 - \dots - \alpha_n Ap_n$$

$$= r_0 - \sum_{j=0}^k \alpha_j Ap_j$$

$$= r_k - \alpha_k Ap_k$$

RELATIONS BETWEEN r_k AND p_k

- $p_k^T r_{k+1} = p_k^T (r_k - \alpha_k A p_k)$
= 0 using α_k in step 1
- $r_{k+1} = b - Ax_{k+1} = -\nabla f(x_{k+1})$
 $\Rightarrow x_{k+1}$ minimizes $f(x)$ along the line $x_k + \alpha p_k$
- Verify

$$p_k^T r_{k+1} = p_k^T r_{k+2} = \dots p_n^T r_n = 0$$

$$p_k^T r_k = p_k^T r_{k-1} = \dots p_n^T r_0$$

EXPANDING SUBSPACE PROPERTY

- From step 2:

$$x_{k+1} = x_0 + \alpha_0 p_0 + \alpha_1 p_1 + \dots + \alpha_n p_n$$

- $r_{k+1} = b - Ax_{k+1}$
 $= r_0 - \alpha_0 Ap_0 - \alpha_1 Ap_1 - \dots - \alpha_n Ap_n$

- Taking inner product with p_j , $0 \leq j \leq k-1$

$$p_j^T r_{k+1} = p_j^T r_0 - \alpha_j p_j^T Ap_j = 0 \text{ (Step 1)}$$

$$\Rightarrow r_{k+1} \perp \{p_0, p_1, \dots, p_{n-1}\}$$

EXPANDING SUBSPACE PROPERTY

- x_{k+1} minimizes $f(x)$ over
 $x \in x_0 + \text{span}\{p_0, p_1, \dots, p_{n-1}\}$
- x_{k+1} in addition to minimizing along $x_k + \alpha p_k$, it also minimizes in the subspace $x_0 + \text{span}\{p_0, p_1, \dots, p_{n-1}\}$
- Hence x_{n-1} minimizes $f(x)$ in \mathbb{R}^n

FINITE TIME CONVERGENCE IN THEORY

- Given $f(x) = \frac{1}{2}x^T Ax - b^T x$,
- An A-Conjugate set $s = \{p_0, p_1, \dots, p_{n-1}\}$
- The conjugate direction framework guarantees convergence in at most n steps
- Implicit assumption: computations are error free

HOW TO FIND A-CONJUGATE SET?

- Given A SPD, consider the eigen-decomposition of A
- $AV_i = V_i\lambda_i \quad 1 \leq i \leq n$
- Let $V = [V_1, V_2, \dots, V_n]$
$$\Lambda = \text{Diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$$
- $AV = V\Lambda, VV^T = V^TV = I$
- $V^TAV = \Lambda$ or $A = V\Lambda V^T$

⇒ Eigenvectors A are A -Conjugate

- It is computationally demanding to find the complete eigensystem

CONJUGATE GRADIENT (CG) ALGORITHM

- $f(x) = \frac{1}{2}x^T Ax - b^T x, x_0 \in \mathbb{R}^n, r_0 = b - Ax_0, p_0 = r_0$
- For $k = 0$ to $n - 1$

Step 1: $\alpha_k = \frac{p_k^T r_k}{p_k^T A p_k} = \alpha_k = \frac{r_k^T r_k}{p_k^T A p_k}$

Step 2: $x_{k+1} = x_k + \alpha_k p_k$ - Iterates

Step 3: $r_{k+1} = r_k - \alpha_k A p_k$ - Residual

Step 4: Test for convergence:

$$r_{k+1}^T r_{k+1} < \varepsilon, \text{ exit}$$

Step 5: $\beta_k = -\frac{r_{k+1}^T A p_k}{p_k^T A p_k} = -\frac{r_{k+1}^T r_{k+1}}{r_k^T r_k}$

Step 6: $p_{k+1} = r_{k+1} + \beta_k p_k$ - Conjugate director

PROPERTIES OF CG ALGORITHM

- The conjugate directions are computed internationally in steps 5 and 6
- Permits alternate choices for α_k and β_k
- p_k 's are A-Conjugate
- $r_{k+1} \perp r_k$ as in gradient algorithm
- $r_k \perp \text{span}\{p_0, p_1, \dots, p_{n-1}\}$

PROPERTIES OF CG ALGORITHM

- $\text{Span}\{p_0, p_1, \dots, p_{n-1}\}$
= $\text{span}\{r_0, r_1, \dots, r_{n-1}\}$
= $\text{span}\{r_0, Ar_0, A^2r_0, \dots, A^{k-1}r_0\}$
= $KS_k(A, r_0)$ krylov subspace of dimension k generated by A and r_0

CG WITH FINITE PRECISION ARITHMETIC

- Let $x^* = A^{-1}b$ be the optimal solution
- $E_k = x_k - x^*$ - error
- $E(x_k) = \frac{1}{2} e_k^T A e_k = \frac{1}{2} \|e_k\|_A^2$
- With round-off errors, considered as an iterative process
- $\frac{E(x_k)}{E(x_0)} \leq 2 \left[\frac{\sqrt{\mathcal{K}_2(A)} - 1}{\sqrt{\mathcal{K}_2(A)} + 1} \right]^k$
- $\mathcal{K}_2(A) = \frac{\lambda_1}{\lambda_n}$, the spectral condition number of A

NUMBER OF ITERATION NEEDED

- Set $2 \left[\frac{\sqrt{\mathcal{K}_2(A)} - 1}{\sqrt{\mathcal{K}_2(A)} + 1} \right]^k \leq \varepsilon = 10^{-d}$
- $k * \log \left(\frac{\sqrt{\mathcal{K}_2(A)} - 1}{\sqrt{\mathcal{K}_2(A)} + 1} \right) \leq \log \frac{\varepsilon}{2}$
- $k \left[\log \left(1 - \frac{1}{\sqrt{\mathcal{K}_2(A)}} \right) - \log \left(1 + \frac{1}{\sqrt{\mathcal{K}_2(A)}} \right) \right] = \log \frac{\varepsilon}{2}$

$$\Rightarrow k^* = \frac{\sqrt{\mathcal{K}_2(A)}}{2} \left| \log \frac{\varepsilon}{2} \right| = \frac{(d+1)\sqrt{\mathcal{K}_2(A)}}{2}$$

A COMPARISON WITH GRADIENT ALGORITHM

$$\varepsilon = 10^{-7}$$

$\mathcal{K}_2(A)$	k^* (Gradient)	k^* (CG)
10	40	24
10^2	403	74
10^3	4030	231
10^4	40288	730

EXERCISES

14.1) Verify that $E(x_{k+1}) = \beta_k E(x_k)$ with $\beta_k = [1 - \frac{(r_k^T r_k)^2}{(r_k^T A r_k)(r_k^T A^{-1} r_k)}]$

14.2) Prove Kantrovich inequality in Slide 17

14.3) Implement the Gradient and Conjugate gradient algorithm in MATLAB

14.4) Let $x = (x_1, x_2)^T$ and $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$. Consider $f(x) = \frac{1}{2}x^T A x$

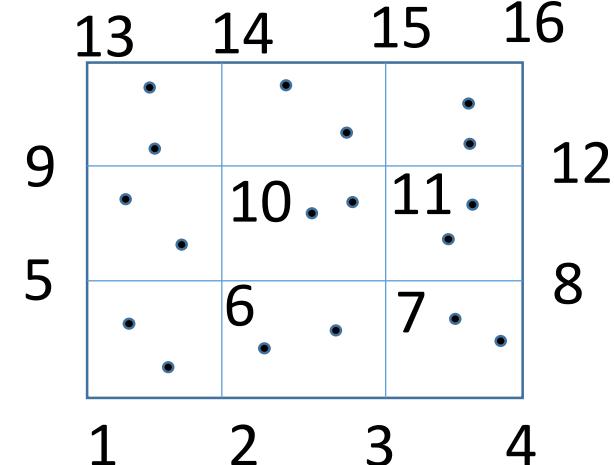
a) Apply the Gradient algorithm and verify that $x_k = \left(\frac{1}{3}\right)^k \begin{bmatrix} 2 \\ (-1)^k \end{bmatrix}$ with $x_0 = (2, 1)^T$

b) Show that $f(x_{k+1}) = \frac{1}{9}f(x_k)$

c) Draw the contour of $f(x)$ and super impose the trajectory $\{x_k\}_{k \geq 0}$ to visually demonstrate convergence

EXERCISES

14.5) Consider a 4×4 grid with $n = 16$ points and q grid boxes as shown



- a) Distribute two observations in each of the grid boxes giving a total $m = 18$ observations
- b) Build the interpolation matrix $H \in \mathbb{R}^{18 \times 16}$
- c) Let $Z = (z_1, z_2, \dots, z_{18})^T$ be the observation vector where $z_i = 70 + v_i$, $v_i \sim N(0, \sigma^2)$, $1 \leq i \leq 18$

EXERCISES

d) Construct

$$\begin{aligned}f(x) &= \frac{1}{2}(Z - Hx)^T(Z - Hx) \\&= \frac{1}{2}[x^T(H^T H)x - 2Z^T Hx + Z^T Z]\end{aligned}$$

e) Apply the Gradient and Conjugate gradient algorithm to minimize
 $f(x)$

f) Plot $f(x_k)$ Vs k for each method comment on your results