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MINIMIZATION PROBLEM – 1D

2

• f: R -> R, be a Convex function 

• Example: f(x) = ax2 + bx + c with a > 0

• Rewrite: f(x) = a[x + 
b

2a
]2 – (

b2−4ac

4a
)

• Minimizer x* = –
b

2a

• f(x*) = - (
b2−4ac

4a
)

• f(x) is a parabola intersects the x – axis at 

x1,2 =  
−b ± b2−4ac

2a
only if b2 > 4ac

• Otherwise, f(x) is above the x-axis



MINIMIZATION PROBLEM – 1D
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• f(x) = x2 + x + 1 = (x + 
1

2
)2 + 

3

4

• x* = -
1

2
and f(x*) = 

3

4

• Since b2 < 4ac, x1,2 are complex and f(x) lies above the x – axis

1

 3 4

 −1
2

f(x)



GENERALIZATION – n – DIMENSION
• f:Rn -> R be Convex in Rn

• Example: f(x) = 
1

2
xTAx – bTx + c, A – SPD

• 𝛻f(x) = Ax – b = 0  => x* = A-1b, minimizer of f(x)

• f(x*) = 
2c − bTA−1b

2
, minimum value of f(x)

• Instead of solving Ax = b, we seek to minimize f(x) interatively
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A DESCENT DIRECTION
• At any point x ∈ Rn, 𝛻f(x) denotes the direction of maximum rate of 

increase

• Since ϷT[𝛻f(x)] < 0, Ϸ is called the descent direction

• f(x) must decrease as we move a small distance along Ϸ away from x
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𝜃

𝛻f(x)

𝑥
Ϸ

-𝛻f(x)

𝜃 < 900

ϷT[𝛻f(x)] < 0

Tangent to f(x) at x
f(x) = C



STEEPEST DESCENT DIRECTION
• Let α > 0 be a small real number

• Expand f(x + αϷ) in first order Taylor series

f(x + αϷ) ≈ f(x) + αϷT[𝛻f(x)]

< f(x) since Ϸ is a descent direction

• Setting Ϸ = - 𝛻f(x), the steepest descent direction:

f(x - α 𝛻f(x)) ≈ f(x) - α 𝛻f(x) 2

< f(x)

and we get the maximum rate of decrease in f(x) at x
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ROLE OF RESIDUAL VECTOR

• Xk be the current operating point

• Residual rk = r(xk) = - 𝛻f(x)

= b – Axk

• Rk is the steepest descent direction of f(x) at xk

• Since rk = 0 when xk = x* = A-1b, rk is a measure of how far xk is 
away from the minimum x*

• rk could be used to test convergence of the iterative minimization
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STEEPEST DESCENT FRAMEWORK

• Define the new operating points as

xk+1 = xk + αrk

• Then: f(xk+1) < f(xk) but

|f(xk+1) – f(xk)| depends on α

• Α is called the step length parameter

• At xk, the direction of search rk is fixed

• Given xk and rk, how to choose α such that we get the maximum 
decrease in f(x) as we move from xk to xk + αrk

• New 1-D minimization problem: minimize g: R -> R where

g(α) = f(xk + αrk)
8



A DIVIDE AND CONQUER PRINCIPLE
• Given n-dimensional minimization of f(x) is reduced to a sequence of 

1-dimensional minimization of g(α) at xk along the steepest descent 
direction rk = -𝛻f(𝑥𝑘), for k = 0, 1, 2, ….

• This is the basis for the resulting iterative framework for the 
minimization of f(x)

9



OPTIMAL STEP LENGTH – QUADRATIC PROBLEM
• Let f(x) = 

1

2
xTAx – bTx + c, A – SPD

• Set xk+1 = xk + αrk

• g(α) = f(xk+1) = f(xk + αrk)

= f(xk) + 
1

2
(rk

TArk)α2 + (rk
TAxk - rk

Tb)α

• g(α) is quadratic in α

• Setting: 
dg

dα
= (rk

TArk)α + rk
T(Axk - b) = 0

• Minimizer of g(α) is

αk = -
rk
T(Axk − b)

rk
TArk

= 
rk
Trk

rk
TArk

> 0

Unless rk = 0 10



STEEPEST DESCENT/GRADIENT ALGORITHM
• f(x) = 

1

2
xTAx – bTx + c, x0 ∈ Rn given 

r0 = r(x0) = Ax0 – b

For k = 0, 1, 2, …

Step 1 αk = 
rk
Trk

rk
TArk

- optimal step length

Step 2 xk+1 = xk + αkrk – iterates

Step 3 Test for convergence. If yes, exit

Step 4 rk+1 = rk – αkArk – residual update
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ORTHOGONALITY OF RESIDUALS
• Recall that the residual at xk+1 is

rk+1 = b – Axk+1

= b – A(xk + αkrk)

= rk – αkArk - The residual update

• Also rk
Trk+1 =  rk

T(rk – αkArk) 

= rk
Trk – αkrk

TArk

= 0

• That is, rk+1 ⊥ rk

• Convergence question: When is lim
𝑘→∞

𝑥𝑘 = x* = A-1b ? 
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ERROR AND RESIDUAL VECTORS
• Define the error: ek = xk – x* = xk – A-1b

• Then: Aek = Axk – b = -rk

• rk is measurable but ek is not

• ek is useful is proving convergence of the sequence x0, x1, x2, …

• To prove Convergence: show lim
𝑘→∞

𝑒𝑘 = 0
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ENERGY NORM OF THE ERROR ek
• Define

E(xk) = f(xk) – f(x*)

• Setting b = Ax* and simplifying 

E(xk) = 
1

2
(xk – x*)A(xk – x*) 

= 
1

2
ek

TAek = 
1

2
𝑒𝑘 𝐴

2 > 0

unless ek = 0

• E(xk) is a measure of how far xk is from x*

• Since A is SPD, E(xk) = 0 if and only if xk = x*
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A FRAME WORK FOR CONVERGENCE PROOF 
• Evaluate E(x) along the trajectory and prove that E(xk) is a decreasing 

function of k

• Since E(xk) is bounded below by zero, prove that E(xk) → 0 as k → ∞

• This framework is due to A.Lyapunov and has come to be known as 
the Lyapunov method 
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A RECURSIVE RELATION FOR E(xk)
• E(xk+1) = f(xk+1) – f(x*)

• Substituting xk+1 = xk + αkrk and simplifying with b = A-1x*, it follows:

E(xk+1) = βkE(xk)

βk = [ 1 -
(rk

Trk)2

(rk
TArk)(rk

TA−1rk)
]
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KANTOROVICH INEQUALITY
• Let A ∈ Rn be SPD

• Let λ1 ≥ λ2 ≥ … ≥ λn > 0 be the eigenvalues of A 

• Kantorovich inequality states: for any y ∈ Rn

(yTy)2

(yTAy)(yTA−1y)
≥ 1 −

λ1 − λn

λ1 + λn

2
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UPPER BOUND ON βk: CONDITION NUMBER OF A
• Combining:

• βk = [ 1 -
(rk

Trk)2

(rk
TArk)(rk

TA−1rk)
]

≤ 
λ1−λn

λ1+λn

2

=

λ1
λn

−1

λ1
λn

+1

2

=
𝒦2(A)−1

𝒦2(A)+1

2

= β < 1

• 𝒦2(A) = 
λ1

λn
= condition number of A

≥ 1 when A is SPD
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CONVERGENCE OF E(xk)
• Hence

E(xk+1) ≤ βE(xk) and β < 1

• Iterating

E(xk) ≤ βkE(x0) → 0 as k → ∞

• Hence, lim
𝑘→∞

E(xk) = 0 and lim
𝑘→∞

xk = x*
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SUMMARY – MAIN THEOREM
• If f(x) = 

1

2
xTAx – bTx + c, and A is SPD then the gradient algorithm, 

starting from any x0, Converges to the minimum as k → ∞

• However, the rate if Convergence depends on β which in term 
depends only on the condition number 𝒦2(A) of A and not on n, the 
dimension of the space
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ESTIMATION OF THE NUMBER OF ITERATIONS
• For what value of k:

𝐸 𝑥𝑘

𝐸 𝑥0
≤ βk = ε = 10-d

• Solving βk = 10-d => k* = 
𝑑

log10 𝛽−1

• That is, for a given β, in k* iterations
𝐸 𝑥𝑘

𝐸 𝑥0
≤ 10-d
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DEPENDENCE OF k* ON β AND 𝒦2(A)

22

𝒦2(A) β k*

1 0 -

10 0.66942 40

100 0.960788 403

1000 0.996008 4030

104 0.9996 40288



EXAMPLE IN R2

• Consider A = 
1 0
0 𝜆

, with λ ≥ 1

• f(x) = 
1

2
xTAx = 

1

2
(𝑥1

2 + 𝜆1𝑥2
2)

= 
𝑥1

2

( 2)2 + 
𝑥2

2

( 2𝜆)2

• The minimum of f(α) occurs at x* = (0, 0)T

• 𝛻f(𝑥𝑘) = Ax = (x1, λx2)T = -r(x)

• Set x0 = (λ, 1)T

• Verify α0 = 
r0
Tr0

r0
TAr0

= 
2

1+𝜆

• x1 = x0 + α0r0 =  
𝜆−1

𝜆+1

𝜆
−1

23



EXAMPLE IN R2 - CONTINUED
• Continuing

xk =  (
𝜆−1

𝜆+1
)𝑘 𝜆

(−1)𝑘 → 0 as k → ∞

• When λ = 4, xk = (0.6)k
4

(−1)𝑘

• Zig-Zag behavior: Iterates x0, x1, x2, …. exhibit oscillatory behavior 
which slows the convergence
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1-D SEARCH – GENERAL CASE
• Given an operating point x, a descent direction Ϸ, the optimal step 

length α is obtained by minimizing

g(α) = f(x + αϷ)

• Solve 
𝑑𝑔

𝑑𝛼
= [𝛻𝑓 𝑥 + 𝛼Ϸ ]𝑇Ϸ = 0        -> (*)

• When f is quadratic  => g is quadratic and (*) is linear in α

• When f is not quadratic, (*) can be solved only numerically

25



QUADRATIC APPROXIMATION TO g(α)
• Compute the following values of g(α):

g(0) = f(x)

g(1) = f(x + Ϸ)
𝑑𝑔(0)

𝑑𝛼
= [𝛻𝑓 𝑥 ]𝑇Ϸ

• Let m(α) = aα2 + bα + c be a quadratic approximation to g(α)

26



QUADRATIC APPROXIMATION TO g(α)
• Set  m(0) = g(0) = c

m(1) = g(1) = a + b + c

m’(0) =  
𝑑𝑚(𝛼)

𝑑𝛼 𝛼=0
=  

𝑑𝑔(𝛼)

𝑑𝛼 𝛼=0
=  (2aα + b) 𝛼=0 = b

• Hence a = g(1) – g(0) – g’(0)

b = g’(0)

c = g(0)

• Setting 
𝑑𝑚(𝛼)

𝑑𝛼
= 0  => optimal step length

α = -
b

2a
= 

g′(0)

2[g 1 −g 0 −g′ 0 ] 27



A LOOK BACK
• Gradient method Converges only asymptotically even for Quadratic 

functions

• Is finite time Convergence feasible at least theoretically?

• The conjugate direction/conjugate gradient methods can in principle 
achieve this goal for Quadratic functional

28



A-CONJUGATE VECTORS
• Let A ∈ Rnxn be SPD

• S = {Ϸ0, Ϸ1, … Ϸn-1} be a set of n non-null vectors in Rn

• This set is mutually A-Conjugate if 

Ϸi
TAϷj = 0 for i ≠ j 

≠ 0 for i = j

• Extension of the notion of orthogonality

• Claim: if a set S of vectors are A-Conjugate then they are also linearly 
independent
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CONJUGATE VECTORS AS A BASIS FOR Rn

• Let x0 ∈ Rn be a fixed vector in Rn

• For any x ∈ Rn:

x – x0 = α0Ϸ0 + α1Ϸ1 + … + αn-1Ϸn-1

• By A-Conjugacy

Ϸk
TA(x – x0) =  𝑗=0

𝑛−1 𝛼𝑗Ϸ𝑘
𝑇𝐴Ϸ𝑗 = 𝛼𝑘Ϸ𝑘

𝑇𝐴Ϸ𝑘

𝛼𝑘 = 
Ϸk

TA(x – x0)

Ϸ𝑘
𝑇
𝐴Ϸ𝑘

, 0 ≤ k ≤ n - 1

30



SOLUTION OF Ax = b USING CONJUGATE VECTORS

• Let x* ∈ Rn be the solution of the linear system Ax = b where A is SPD

• Let S = {Ϸ0, Ϸ1, … Ϸn-1} be A – Conjugate

• If x0 is an initial guess, then

A(x* - x0) = b – Ax0 = r0

Is the residual at x0

• Then

x* = x0 +  𝑗=0
𝑛−1 𝛼𝑗Ϸ𝑗

𝛼𝑘 = 
Ϸk

TA(x∗ – x0)

Ϸ𝑘
𝑇
𝐴Ϸ𝑘

= 
Ϸk

TAr0

Ϸ𝑘
𝑇
𝐴Ϸ𝑘
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QUADRATIC MINIMIZATION
• Let A ∈ Rnxn be SPD, b ∈ Rn, c ∈ R

• Consider f(x) =  
1

2
xTAx – bTx + c

• Minimizer is the solution of Ax = b

• Given Ax = b, r(x) = b – Ax

• Minimize f(x) = 
1

2
rT(x)r(x) = 

1

2
(b – Ax)T(b – Ax)

= 
1

2
bTb – bTAx + 

1

2
xT(ATA)x

• 𝛻f(x) = (ATA)x – ATb = 0   => Ax = b if A is SPD
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LINEAR TRANSFORMATION – CONJUGATE BASIS
• Define P = [Ϸ0, Ϸ1, … Ϸn-1] ∈ Rnxn

• PTAP = 

Ϸ0
T

Ϸ1
T

⋮
Ϸn−1

T

A[Ϸ0, Ϸ1, … Ϸn−1]

= Diag(d0, d1, … dn-1) = D ∈ Rnxn

di = Ϸi
TAϷi , 0 ≤ i ≤ n – 1

• Let x = x0 + Pα, α ∈ Rn

33



DECOMPOSITION OF f(x) IN CONJUGATE BASIS
• Define (r0 = b – Ax0) ,  D = PTAP

G(α) = f(x) = f(x0 + Pα)

= 
1

2
(x0 + Pα)TA(x0 + Pα) – bT(x0 + Pα)

= (
1

2
x0

TAxo – bTxo) + 
1

2
αT(PTAP)α – (b – Axo)Tpα

= f(x0) + 
1

2
 k=0

n−1 αk
2dk −  k=0

n−1 r0
TϷk αk

= f(x0) +  k=0
n−1 gk(α)

gk(α) = 
1

2
dkαk

2 - r0
TϷkαk

34



DIVIDE AND CONQUER
• min

𝑥
𝑓(𝑥) = min

𝛼
f(x0 + αϷ)

= min
𝛼

𝐺(𝛼)

= min
𝛼

{f x0 +  𝑘=0
𝑛−1 gk(αk)}

=  𝑘=0
𝑛−1 min

𝛼
gk(αk) (f x0 a constant)

= Minimization n 1-D problems

Since gk(αk) depend only on αk

35



1-D MINIMIZATION

• Recall: gk(αk) = 
1

2
dkαk

2 - r0
TϷkαk

•
𝑑gk(αk)

𝑑αk
= dkαk - Ϸk

Tr0 = 0

• Optimal αk = 
Ϸk

T
r0

dk

= 
Ϸk

T
(b −Ax0)

Ϸk
TAϷk

36



CONJUGATE DIRECTION – FRAME WORK

• f(x) = 
1

2
xTAx – bTx, x0 ∈ Rn, r0 = b – Ax0

• Given A-Conjugate set S = {Ϸ0, Ϸ1, … Ϸn-1} 

For k = 0 to n – 1

Step 1: αk = 
Ϸk

T
rk

Ϸk
TAϷk

Step 2: xk+1 = xk +αkϷk

Step 3: rk+1 = rk – αkAϷk

Step 4: If rk+1 = 0, then x* = xk+1

37



VERIFY THE EXPRESSION FOR αk IN STEP 1 
• Given xk and Ϸk

• Consider the 1-D minimization of 

g(α) = f(xk + αϷk)

= 
1

2
(xk + αϷk)TA(xk + αϷk) – bT(xk + αϷk)

= f(xk) +  
1

2
(Ϸk

TAϷk)α2 – (b – Axk)TϷkα

Minimizer: αk = 
(b – Axk)TϷk

Ϸ𝑘
𝑇AϷk

= 
Ϸk

T
rk

Ϸ𝑘
𝑇AϷk

38



VERIFY THE EXPRESSION IN STEP 3
• From the step 2:

xk+1 = x0 +  α0Ϸ0 + α1Ϸ1 + … + αnϷn

• rk+1 = b – Axk+1

= b – Ax0 – α0AϷ0 – α1AϷ1 – … – αnAϷn

= r0 –  𝑗=0
𝑘 𝛼𝑗𝐴Ϸ𝑗

= rk – αkAϷk
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RELATIONS BETWEEN rk AND Ϸk

• Ϸk
Trk+1 = Ϸk

T(rk – αkAϷk) 

=  0 using αk in step 1

• rk+1 = b – Axk+1 = - 𝛻f(𝑥𝑘+1)

xk+1 minimizes f(x) along the line xk + αϷk

• Verify

Ϸk
Trk+1 = Ϸk

Trk+2 = … Ϸn
Trn = 0

Ϸk
Trk = Ϸk

Trk-1 = … Ϸn
Tr0

40



EXPANDING SUBSPACE PROPERTY
• From step 2:

xk+1 = x0 +  α0Ϸ0 + α1Ϸ1 + … + αnϷn

• rk+1 = b – Axk+1

= r0 – α0AϷ0 – α1AϷ1 – … – αnAϷn

• Taking inner product with Ϸj, 0 ≤ j ≤ k -1

Ϸj
Trk+1 = Ϸj

Tr0 – αjϷj
TAϷj = 0 (Step 1)

=> rk+1 ⊥ {Ϸ0, Ϸ1, … Ϸn-1}

41



EXPANDING SUBSPACE PROPERTY
• xk+1 minimizes f(x) over

x ∈ x0 + span{Ϸ0, Ϸ1, … Ϸn-1}

• xk+1 in addition to minimizing along xk + αϷk, it also minimizes in the 
subspace x0 + span{Ϸ0, Ϸ1, … Ϸn-1}

• Hence xn-1 minimizes f(x) in Rn

42



FINITE TIME CONVERGENCE IN THEORY

• Given f(x) = 
1

2
xTAx – bTx,

• An A-Conjugate set s = {Ϸ0, Ϸ1, … Ϸn-1}

• The conjugate direction framework guarantees convergence in at mos
n steps

• Implicit assumption: computations are error free 

43



HOW TO FIND A-CONJUGATE SET?
• Given A SPD, consider the eigen-decomposition of A

• AVi = Viλi 1 ≤ i ≤ n

• Let V = [V1, V2, … Vn]

Λ = Diag(λ 1, λ 2, … λ n)

• AV = VΛ, VVT = VTV = I

• VTAV = Λ or A = VΛVT

Eigenvectors A are A-Conjugate

• It is computationally demanding to find the complete eigensystem

44



CONJUGATE GRADIENT (CG) ALGORITHM
• f(x) = 

1

2
xTAx – bTx, x0 ∈ Rn, r0 = b – Ax0, Ϸ0 = r0

• For k = 0 to n – 1

Step 1: αk = 
Ϸk

Trk

Ϸk
TAϷk

= αk = 
rk
Trk

Ϸk
TAϷk

Step 2: xk+1 = xk +αkϷk - Iterates

Step 3: rk+1 = rk – αkAϷk - Residual

Step 4: Test for convergence:

rk+1
T rk+1 < 𝜀, exit

Step 5: βk = -
rk+1
T AϷk

Ϸk
TAϷk

= -
rk+1
T rk+1

rk
Trk

Step 6: Ϸk+1 = rk+1 + βkϷk - Conjugate director
45



PROPERTIES OF CG ALGORITHM
• The conjugate directions are computed internationally in steps 5 and 

6

• Permits alternate choices for αk and βk

• Ϸk’s are A-Conjugate

• rk+1 ⊥ rk as in gradient algorithm

• rk ⊥ span{Ϸ0, Ϸ1, … Ϸn-1}
46



PROPERTIES OF CG ALGORITHM 
• Span{Ϸ0, Ϸ1, … Ϸn-1}

= span{r0, r1, … rn-1}

= span{r0, Ar0, A2r0 … Ak-1r0}

= KSk(A, r0) krylov subspace of dimension k generated by A and r0

47



CG WITH FINITE PRECISION ARITHMETIC 
• Let x* = A-1b be the optimal solution

• Ek = xk – x* - error

• E(xk) = 
1

2
ek

TAek = 
1

2
𝑒𝑘 𝐴

2

• With round-off errors, considered as an iterative process

•
E(xk)
E(x0)

≤ 2
𝒦2(A) −1

𝒦2(A)+1

𝑘

• 𝒦2(A) = 
𝜆1

𝜆𝑛
, the spectral condition number of A

48



NUMBER OF ITERATION NEEDED 

• Set 2
𝒦2(A) −1

𝒦2(A)+1

𝑘

≤ ε = 10-d

• k*log(
𝒦2 A −1

𝒦2 A +1
) ≤ log

ε
2

• k[log(1 −
1

𝒦2 A
) − log(1 +

1

𝒦2 A
)] = log

ε
2

=> k* = 
𝒦2 A

2
log

ε
2

= 
(𝑑+1) 𝒦2 A

2

49



A COMPARISON WITH GRADIENT ALGORITHM 
ε = 10-7

50

𝒦2(A) k* 
(Gradient)

k*
(CG)

10 40 24

102 403 74

103 4030 231

104 40288 730



EXERCISES

14.1) Verify that E(xk+1) = βkE(xk) with βk = [ 1 -
(rk

Trk)2

(rk
TArk)(rk

TA−1rk)
]

14.2) Prove Kantrovich inequality in Slide 17

14.3) Implement the Gradient and Conjugate gradient algorithm in 
MATLAB

14.4) Let x = (x1, x2)T and A = 
1 0
0 2

. Consider f(x) = 
1

2
xTAx

a) Apply the Gradient algorithm and verify that xk =  (
1

3
)𝑘 2

(−1)𝑘 with 

x0 = (2, 1)T

b) Show that f(xk+1) =  1 9f(xk)

c) Draw the contour of f(x) and super impose the trajectory {xk}k≥0

to visually demonstrate convergence 51



EXERCISES
14.5) Consider a 4x4 grid with n = 16 points and q grid boxes as shown

a) Distribute two observation in each of the grid boxes giving a total    
m = 18 observations

b) Build the interpolation matrix H ∈ R18x16

c) Let Z = (z1, z2, … z18)T be the observation vector where zi = 70 + vi,     
vi ~ N(0, σ2), 1 ≤ i ≤ 18
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EXERCISES
d) Construct

f(x) = 
1

2
(Z – Hx)T(Z – Hx)

= 
1

2
[xT(HTH)x – 2ZTHX + ZTZ]

e) Apply the Gradient and Conjugate gradient algorithm to minimize 
f(x)

f) Plot f(xk) Vs k for each method comment on your results
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