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MINIMIZATION PROBLEM - 1D

 f: R-> R, be a Convex function

e Example: f(x) = ax?+ bx+ cwitha>0
b2—4ac)
4a

* Rewrite: f(x) = a[x + %]2 —
b

e Minimizer x* = ——
2a

+ fx¥) = - (222

* f(x) is a parabola intersects the x — axis at

—b + Vb2—4ac
2a
* Otherwise, f(x) is above the x-axis

Xp o = only if b% > 4ac



MINIMIZATION PROBLEM - 1D

. — 2 _ 1o,.3
f(x)=x?+x+1 (x+2)+4

e x* = = and f(x*) = 2
2 4

* Since b? < 4ac, x, , are complex and f(x) lies above the x — axis



GENERALIZATION — n — DIMENSION

e f:R"-> R be Convex in R"
* Example: f(x) = %xTAx —b'x+c, A—SPD

e Vf(x) = Ax—b =0 =>x* = Alb, minimizer of f(x)

2c-bTA™p .
e f(x*) === . , minimum value of f(x)

* Instead of solving Ax = b, we seek to minimize f(x) interatively



A DESCENT DIRECTION

* At any point x € R", Vf(x) denotes the direction of maximum rate of
Increase

7f(x)
. |8| < 90°
g X bT[Vf(x)] <O
Tangent to f(x) at x
-Vilx) f(x) = C

* Since PT[Vf(x)] <0, b is called the descent direction

* f(x) must decrease as we move a small distance along b away from x




STEEPEST DESCENT DIRECTION

* Let a > 0 be a small real number
* Expand f(x + ab) in first order Taylor series
f(x + ab) = f(x) + abT[Vf(x)]
< f(x) since b is a descent direction

 Setting b = - Vf(x), the steepest descent direction:

f(x - o Vf(x)) = f(x) - a|[VF(x)]|>

< f(x)
and we get the maximum rate of decrease in f(x) at x




ROLE OF RESIDUAL VECTOR

* X, be the current operating point
* Residual r, = r(x,) = - Vf(x)
= b — Ax,
* R, is the steepest descent direction of f(x) at x,

* Since r, = 0 when x, = x* = A'lb, ||rx|| is a measure of how far x, is
away from the minimum x*

* ||ri|| could be used to test convergence of the iterative minimization



STEEPEST DESCENT FRAMEWORK

* Define the new operating points as
Xeeq = X, + QUF
* Then: f(x,,,) < f(x,) but
| f(x,,,) — f(x,)| depends on a
* Ais called the step length parameter

* At x,, the direction of search r, is fixed

* Given x, and r,, how to choose a such that we get the maximum
decrease in f(x) as we move from x, to x, + ar,

* New 1-D minimization problem: minimize g: R -> R where

g(a) = f(x, + ar,)



A DIVIDE AND CONQUER PRINCIPLE

* Given n-dimensional minimization of f(x) is reduced to a sequence of
1-dimensional minimization of g(a) at x, along the steepest descent
direction r, = -Vf(x,), fork=0, 1, 2, ....

* This is the basis for the resulting iterative framework for the
minimization of f(x)



OPTIMAL STEP LENGTH — QUADRATIC PROBLEM

* Let f(x) = %XTAX —b™x+c, A—SPD
* Set X, = X, +ar,
e g(a) = f(x,,4) = f(x, + ar,)
= f(x,) + %(I‘EAI‘k)OLZ + (rfAxy - 1y b)a
* g(a) is quadratic in a
* Setting: g—i = (rEArk)a + rE(AXk -b)=0
* Minimizer of g(a) is

FE(AXR - b) _ rErk

a, = T = =
k I‘kAI‘k r‘kArk

>0

Unlessr, =0



STEEPEST DESCENT/GRADIENT ALGORITHM

o f(x) = %XTAX — b+ ¢, X, € R" given
ro=rixg) =Ax,—b
Fork=0,1, 2, ..

T
gk :
T ATy optimal step length

Step1 a, =
Step 2 X, =X+ o,r, —iterates
Step 3 Test for convergence. If yes, exit

Step4 r,,=r,—aAr, —residual update



ORTHOGONALITY OF RESIDUALS

* Recall that the residual at x,,, is
M1 = b= AXy
=b—A(x, + a,r,)
=r.— o, Ar, - The residual update
* Also I'pItq = Ty (g — 0L Ar,)
= rlrf Ik — akrg Ar,
=0
* Thatis, rp,, L r,
* Convergence question: When is lim x;, =x*=Alb?

k— oo



ERROR AND RESIDUAL VECTORS

* Define the error: e, = x, —x* = x, — A'lb

* Then: Ae, = Ax,—b =-
* r is measurable but e, is not

* e is useful is proving convergence of the sequence x,, X, X,, ...

* To prove Convergence: show lim ¢; =0

k— o0



ENERGY NORM OF THE ERROR e,

e Define
E(x,) = f(x,) — f(x*)
 Setting b = Ax™ and simplifying

1
E(x,) = —(xk — x*)A(x, — x*)
= _ekAek = ||€k||§1 >0

unless e, =0
* E(x,) is @ measure of how far x, is from x*
* Since A is SPD, E(x,) = 0 if and only if x, = x*



A FRAME WORK FOR CONVERGENCE PROOF

* Evaluate E(x) along the trajectory and prove that E(x,) is a decreasing
function of k

* Since E(x,) is bounded below by zero, prove that E(x,) > 0as k = o

* This framework is due to A.Lyapunov and has come to be known as
the Lyapunov method



A RECURSIVE RELATION FOR E(x,)

* E(X,,q) = f(x,,q) — f(x*)
* Substituting x,,, = x, + a,r, and simplifying with b = A1x*, it follows:
E(Xye1) = BeE(xy)

T.. 2
Bk _ [ 1 (rkrk) ]

B (riEArk) (riEA‘l ry)




KANTOROVICH INEQUALITY

e Let A € R" be SPD

*LetA; 2 A, 2... 2 A, >0 be the eigenvalues of A

* Kantorovich inequality states: for any y € R"

(y'y)? o [

A, — Anr
yTAY)(yTA~ly) —

A+ Ay



UPPER BOUND ON 3,: CONDITION NUMBER OF A

* Combining:
va 4 (rgr)?
Bk =11 (rEArk)(rEA‘lrk)]
-}\, _2
g lxl—xn B i I Y0 o
- }\1+}\n o ;:_1+1 - j(z(A)'Fl -

* K5(A) = ;:—rll = condition number of A

>1 when A is SPD



CONVERGENCE OF E(x,)

* Hence
E(Xy1) < BE(x,) and B < 1

* |terating
E(x,) < BXE(x,) @ 0as k = oo

* Hence, Ilim E(xx) =0and Ilim Xi = X*



SUMMARY — MAIN THEOREM

e If f(x) = %XTAX — b™+ c, and A is SPD then the gradient algorithm,
starting from any x,, Converges to the minimum as k —» oo

* However, the rate if Convergence depends on B which in term
depends only on the condition number KX, (A) of A and not on n, the
dimension of the space



ESTIMATION OF THE NUMBER OF ITERATIONS

 For what value of k:

E(xg)
E(xq)

<Bk=g=10d

- Solving B = 10 =>k*=[ - }
olving logio f71

* That is, for a given B, in k* iterations

E(xg)

< -d
E(xq) 10




DEPENDENCE OF k* ON B AND K, (A)

Ko (A) B k*
1 0
10 0.66942 40
100 0.9607/88 403
1000 0.996008 4030
10% 0.9996 40288




EXAMPLE IN R?

. 1 O .
. — >
Consider A [O /1] ,WithA =21

¢ f(x) = %XTAX = %(xlz + A;x%)
A
(V2)2  (V22)?
* The minimum of f(a) occurs at x* = (0, 0)7
* Vf(xy) = Ax = (xg, Ax,)T = -r(x)

* Setxy=(A, 1)7

T
. I'olo 2
* Verify a, = ——=
Y %o riAr,  1+2
A-1] A

"Xy =Xo+ Qo= S| T



EXAMPLE IN R? - CONTINUED

* Continuing

]—>Oask—>oo

)L+1) [( 1)k
* When A =4, x, = (0.6)* [(_1)k]

* Zig-Zag behavior: Iterates x,, X4, X,, .... exhibit oscillatory behavior
which slows the convergence



1-D SEARCH — GENERAL CASE

* Given an operating point x, a descent direction b, the optimal step
length a is obtained by minimizing

g(a) = f(x + ab)
e Solve

Y= [Vf(x+ap)]P=0  ->(¥

* When f is quadratic => g is quadratic and (*) is linear in a
* When f is not quadratic, (*) can be solved only numerically



QUADRATIC APPROXIMATION TO g(a)

* Compute the following values of g(a):

g(0) = f(x)
g(1) =f(x +P)

W = [vfOI7P

* Let m(a) = aa? + ba + ¢ be a quadratic approximation to g(a)




QUADRATIC APPROXIMATION TO g(a)

 Set m(0)=g(0) =c

m(1l)=g(l)=a+b+c
m'(0) = 2@ 9@ = (2aa+b)[g=0 =b

* Hence a = g(1) —g(0) — g'(0)

dm(a)
da

=0 => optimal step length

b _ g/(0)
2a 2[g(1)-g(0)-g’(0)]

* Setting




A LOOK BACK

* Gradient method Converges only asymptotically even for Quadratic
functions

* |s finite time Convergence feasible at least theoretically?

* The conjugate direction/conjugate gradient methods can in principle
achieve this goal for Quadratic functional



A-CONJUGATE VECTORS

* Let A€ R™ be SPD
*S={p,, Py, ... P} be a set of n non-null vectors in R"
* This set is mutually A-Conjugate if
p{ Ab, = 0 for i # |
#0fori=j
e Extension of the notion of orthogonality

e Claim: if a set S of vectors are A-Conjugate then they are also linearly
independent




CONJUGATE VECTORS AS A BASIS FOR R"

* Let x, € R" be a fixed vector in R"
* For any x € R":

X—Xg=0yPy+a.Py+..+0a P 4
* By A-Conjugacy

PRA(X = Xo) = Y70 a;PrAP; = ay PR APy
_ bLA(X — Xg)
~ braby

04 % , O0<k<n-1



SOLUTION OF Ax = b USING CONJUGATE VECTORS

* Let x* € R" be the solution of the linear system Ax = b where A is SPD
* LetS={p, P,, ... P ;} be A—Conjugate
* If X, is an initial guess, then
A(X* -Xxg) =b—Axy=r,
Is the residual at x,
* Then

_ -1
X* = Xg t+ Z?:O C(j ID]
_ PLA(xx —xo) _ PyAr,

brab,  brab,

i



QUADRATIC MINIMIZATION

e let A€ R™be SPD,b E€R", cER
e Consider f(x) = %XTAX —b™x+ C

e Minimizer is the solution of Ax=Db
e Given Ax = b, r(x) = b — Ax

* Minimize f(x) = %rT(x)r(x) - %(b — Ax)T(b — Ax)
- %bTb — bTAX + %XT(ATA)X
e Vf(x) = (NA)x—ATb =0 =>Ax = b if A is SPD



LINEAR TRANSFORMATION — CONJUGATE BASIS

* Define P = [P, P,, ... P, ] € R™"

R
Po

pT
e PTAP = 1 1A[Py, Py, ... Dn_l]

= Diag(d,, d, ... d . ;) = D € R™"
d;=P{AP,, 0<i<n-1

* Letx=x,+Pa, a €R"



DECOMPOSITION OF f(x) IN CONJUGATE BASIS

* Define (r,=b —Ax,), D =PTAP
G(a) = f(x) = f(x, + Pa)
= %(xO + Pa)"A(x, + Pa) — b'(x, + Pal)
= (>x3 A, — bTX,) + = oT(PTAP)a - (b — Ax,)Tpat
= f(x,) + %Z{(‘;é aipdi — Ykoo To Pk Ok
= f(xo) + Zk=o 8k ()

1
g (a) = Edkoqz( - rg Py O



DIVIDE AND CONQUER

* min f(x) = minf(xy + ab)
X a

= min G (@)
a

= min{f(xo) + r=08x ()}

= Y r_omingy (o) (f(xo) a constant)
a

= Minimization n 1-D problems
Since g (ay) depend only on oy



1-D MINIMIZATION

1
* Recall: gp(ay) = Edkoqz( - 1o bl 0y

. dgk(oy) _ wT.
. d.ayg - Prrg =0

. DEI‘O
* Optimal oy = .
k

_ Pi(b —Ax)
P APk




CONJUGATE DIRECTION — FRAME WORK

* f(x) = ixTAx —b'x, x, ER", r, = b —Ax,
* Given A-Conjugate set S = {b,, P,, ... P, 1}
Fork=0ton-1
Py
P AP
Step 2: X, .1 = X, +o, Pk

Step 1: oy =

Step 3:r,, =r,— o, APy

Step 4:If r,,, =0, then x* = x,,




VERIFY THE EXPRESSION FOR o IN STEP 1

* Given x, and by
* Consider the 1-D minimization of
g(a) = f(x, + aby)
= %(xk + aPy)TA(x, + aby) — b'(x, + aby)
= f(x) + = (PRAPy)o2 = (b — Axy) TPy

— T T
Minimizer: a, = (b }A‘Xk) Pic _ I;krk
PTAP.  PLAP,




VERIFY THE EXPRESSION IN STEP 3

* From the step 2:
Xpo1 = Xo+ 0Py +a,P +...+a P,
* M1 = D= AXyy
=b - AxO — 0 AP, — a,AP, —...—a AP,
=ry— ] —0 a]AID

=r,— AP,



RELATIONS BETWEEN r, AND b,

* prll;rkﬂ = IDE(rk — o, APy )
= Ousing a, instep 1
* M1 = b= AXy = - V(g1 1)
—X,,; Minimizes f(x) along the line x, + ab,
* Verify
I:)'II(‘rk+1 = I:)'II(‘rk+2 = e I:)rrIl‘rn =0

T T _ T
Prr = Prr.i=... Pplp



EXPANDING SUBSPACE PROPERTY

* From step 2:
Xpo1 = Xo+ 0Py + P, +...+a P,
* M1 = D= AXyy
=ry— 0 AP, — a;AP; — ... —a AP,
* Taking inner product with b, 0 <j<k-1
P fer = Pi 1o — ;P Ab; = 0 (Step 1)
=>r,,1 L {Py, Py, .. P4}



EXPANDING SUBSPACE PROPERTY

* X,,, Minimizes f(x) over
X € Xy + span{b,, P, ... P, 4}

* X,,4 IN addition to minimizing along x, + ab,, it also minimizes in the
subspace x, + span{bp,, P,, ... P .}

* Hence x,, , minimizes f(x) in R"



FINITE TIME CONVERGENCE IN THEORY

* Given f(x) = %XTAX — b'x,

* An A-Conjugate sets = {b,, P, ... P, ;}

* The conjugate direction framework guarantees convergence in at mos
n steps

* Implicit assumption: computations are error free



HOW TO FIND A-CONJUGATE SET?

* Given A SPD, consider the eigen-decomposition of A
*AV.=VA 1<i<n
*letV=[V,V,,..V]
A =Diag(A, A5, ... N\ )
e AV=VA VWT=V'V =]
* VIAV = A or A=VAV'
—>Eigenvectors A are A-Conjugate
* It is computationally demanding to find the complete eigensystem



CONJUGATE GRADIENT (CG) ALGORITHM

e f(x) = %XTAX —b'x, Xy ER", ry=b —Ax,, Py=Tr,
e Fork=0ton-1
p'lErk "
pTAb, K~ BIAP,
Step 2: x,,, = X, +a, Py - [terates
Step 3: r,, = r,— o, APy - Residual
Step 4: Test for convergence:

Step 1: ay =

rE+1rk+1 < g, exit
T T
St 5. - rk+1A|:)k _ rk+1rk+1
€ep o: Bk - T - T
pkApk rkrk

Step 6: Pyyq = r,q + B Pk - Conjugate director




PROPERTIES OF CG ALGORITHM

* The conjugate directions are computed internationally in steps 5 and
6

* Permits alternate choices for a, and B3,
* p’s are A-Conjugate
*r.; 1 r.asingradient algorithm

*r, L span{b,, Py, ... P, 4}



PROPERTIES OF CG ALGORITHM

* Span{b,, Py, ... P .}
=span{ry, ry, - .1}
= span{r,, Ar,, A%r, ... A¥Ir.}
= KS,(A, r,) krylov subspace of dimension k generated by A and r,



CG WITH FINITE PRECISION ARITHMETIC

* Let x* = A'lb be the optimal solution
* E, = x, —X* - error
1 T 1
* E(x) =5 exAei == llell
* With round-off errors, considered as an iterative process

Elxk) _ [m 1]

E(xo) JHK,(A)+1

* K5(A) = /1—, the spectral condition number of A

n




NUMBER OF ITERATION NEEDED

k
SetZIVKZ(A)Jr <ege=10

X, (A)

,/JCZ(A)+1) : og—

1 £
e k[log(1 — — log(1 =log =
s k* = w/?CZ(A ‘ (d+1)w/762(A

* k*log(




A COMPARISON WITH GRADIENT ALGORITHM

e=10"
K5 (A) k* k*
(Gradient) (CG)
10 40 24
10° 403 74
103 4030 231
104 40288 730




EXERCISES

(rErk) 2 ]
(riEArk) (rrlgA‘lrk)

14.2) Prove Kantrovich inequality in Slide 17
14.3) Implement the Gradient and Conjugate gradient algorithm in
MATLAB

14.4) Let x = (x4, X,)Tand A = [(1) (2)] Consider f(x) = %XTAX

a) Apply the Gradient algorithm and verify that x, = (g)k[(_zl)k] with
Xo=(2,1)"

b) Show that f(x,,,) = 1/of(x,)

c) Draw the contour of f(x) and super impose the trajectory {X, },q

to visually demonstrate convergence



EXERCISES

14.5) Consider a 4x4 grid with n = 16 points and q grid boxes as shown
13 14 15 16

9.7 410..11. 12

5. 6,7..8

1 2 3 4
a) Distribute two observation in each of the grid boxes giving a total

m = 18 observations
b) Build the interpolation matrix H € R18x16

c) LetZ=(zy, z,, ..z.5)" be the observation vector where z, = 70 + v,
v. ~ N(0, 0%),1<i<18



EXERCISES

d) Construct

f(x) = %(z — HX)T(Z = Hx)

= “[X"(HH)x — 2Z"HX + Z'Z]

e) Apply the Gradient and Conjugate gradient algorithm to minimize
f(x)
f) Plot f(x,) Vs k for each method comment on your results



