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MATRIX METHODS FOR SOLVING Ax = b

2

Two classes

• Direct method • Iterative method

• Multiplicative decomposition of 
A

• Additive decomposition of 
A

• Convergence proof
• Rate of convergence

• Complexity – O(n3) • Complexity depends on the 
cost per iteration and the 
desired accuracy 

• Gives exact answer if there is 
no round – off

• Three decompositions: LU, QR, 
SVD

• Jacobi, Gauss-Seidel, SOR, 
etc



DIRECT METHOD – LU – DECOMPOSITION OF A
• LU decomposition derived from the classical Gaussian elimination 

method

• Given A – nonsingular, there exists L, a lower triangular and a U –
upper triangular matrices:

A = LU
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LU DECOMPOSITION OF A

•

𝑎11 𝑎12 ⋯ 𝑎1𝑛

𝑎21 𝑎22 ⋯ 𝑎2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑛1 𝑎𝑛2 ⋯ 𝑎𝑛𝑛

= 

1 0 0 ⋯ 0
𝑙21 1 0 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

𝑙𝑛1 𝑙𝑛2 ⋯ ⋯ 1

𝑢11 𝑎12 ⋯ 𝑢1𝑛

0 𝑢22 ⋯ 𝑢2𝑛

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑢𝑛𝑛

• L has 
𝑛(𝑛−1)

2
unknowns and U has 

𝑛(𝑛+1)

2
unknowns – a total of n2

unknowns

• Multiplying L and U and equating the elements we can easily solve 
the system of n2 equations in n2 unknowns
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EXAMPLE

• A = 
1  3 2

 3 2  1 2
= 

1 0
𝑙21 1

𝑢11 𝑢12

0 𝑢22
= LU

= 
𝑢11 𝑢12

𝑙21𝑢11 𝑙21𝑢12 + 𝑢22

• Verify:  L = 
1 0
 3 2 1

, U = 
1  3 2

0  5 4

• By exploiting the patterns in the n2 nonlinear equations in n2

unknowns we get the following algorithm for L and U
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LU DECOMPOSITION – PSEUDO CODE
• Given A ∈ Rnxn, non singular

For r = 1 to n

For i = r to n

uri = ari -  𝑗=1
𝑟−1 𝑙𝑟𝑗𝑢𝑗𝑖 - Rows of U

End For

For i = r + 1 to n

lir = 
1

𝑢𝑟𝑟
[𝑎𝑖𝑟 -  𝑗=1

𝑟−1 𝑙𝑟𝑗𝑢𝑗𝑖] - Columns of L

End For

End For

• Verify that the total number of operation is O(n3)
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LU DECOMPOSITION – A FRAME WORK FOR SOLUTION

• Given L, U: A = LU, then

• Ax = (LU)x = L(Ux) = Lg = b and Ux = g

• Summary – a three step procedure

• Decompose A = LU

• Solve Lg = b – lower triangular system

• Solve Ux = g – upper triangular system
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SOLUTION LOWER TRIANGULAR SYSTEM: Lg = b

• Let

𝑙11 0 0 ⋯ 0
𝑙21 𝑙22 0 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

𝑙𝑛1 𝑙𝑛2 𝑙𝑛3 ⋯ 𝑙𝑛𝑛

𝑔1

𝑔2

⋮
𝑔𝑛

= 

𝑏1

𝑏2

⋮
𝑏𝑛

• Forward elimination method:

g1= 
𝑏11

𝑙11

For i = 2 to n

gi = 
1

𝑙𝑖𝑖
[𝑏𝑖 -  𝑗=1

𝑖−1 𝑙𝑖𝑗𝑔𝑗]

End For

• Verify that it takes O(n2) operations to compute g
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SOLUTION UPPER TRIANGULAR SYSTEM: Ux = g

• Let 

𝑢11 𝑢12 ⋯ 𝑢1𝑛

0 𝑢22 ⋯ 𝑢2𝑛

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑢𝑛𝑛

𝑥1

𝑥2

⋮
𝑥𝑛

= 

𝑔1

𝑔2

⋮
𝑔𝑛

• Back substitution method:

xn= 
𝑔𝑛

𝑢𝑛𝑛

For i = n - 1 to n

xi = 
1

𝑢𝑖𝑖
[𝑔𝑖 -  𝑗=𝑖+1

𝑖−1 𝑢𝑖𝑗𝑥𝑗]

End For

• Verify that it takes O(n2) operations to compute x
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TOTAL CASE OF SOLVING Ax = b
• LU decomposition step – O(n3)

• Lower triangular system – O(n2)

• Upper triangular system – O(n2)

• Total cost is O(n3)
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COMPLEXITY OF LARGE PROBLEM
• Let n = 106 and n3 = 1018 – operations

• Consider a machine that takes 10-12 second per operation. It’s a TERA 
FLOP MACHINE

• TIME needed = 1018x10-12 = 106 seconds

• There are only 60x60x24x365 = 32,536,000 = 31.5x106 seconds in one 
year

• It takes = 
106

60x60x24
= 

106

86,400
= 11.575 days to solve Ax = b 
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WHEN A IS SYMMETRIC
• Let D = diag(u11, u22, … unn) a diagonal matrix with the diagonal 

elements of U

• Then U = DM where the diagonal of M are all 1

• Then A = LDM

• If A is symmetric, then M = LT and A = LDLT
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EXAMPLE
• Recall 

A =  
1  3 2

 3 2  1 2
= LU = 

1 0
 3 2 1

1  3 2

0  5 4

U = 
1  3 2

0  5 4
= DM = 

1 0
0  5 4

1  3 2

0 1

M = 1  3 2

0 1
= LT since A is symmetric

D½ = 
1 0

0  5 2

A = 
1 0
 3 2 1

1 0

0  5 2

1 0

0  5 2

1  3 2

0 1
= 

1 0

 3 2  5 2

1  3 2

0  5 2

= GGT
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WHEN A – SPD – CHOLESKEY DECOMPOSITION
• When A is PD => diagonal elements of D are positive

• A = LDLT = LD½D½LT

= (LD½)(LD½)T

= GGT – Choleskey decomposition

• G = LD½ is called the Choleskey factor

• D½ = diag(𝑢11
½ , 𝑢22

½ , … 𝑢𝑛𝑛
½ ) is the square root of the diagonal matrix D

• G is also known as the square root of A
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COMPUTATION OF G GIVEN A
For j = 1 to n

gjj = [ajj -  𝑘=1
𝑗 −1

𝑔𝑗𝑘
2 ]½ - diagonal of G

For i = j + 1 to n

gij = 
1

𝑔𝑗𝑗
[aij -  𝑘=1

𝑗 −1
𝑔𝑖𝑘 𝑔𝑘𝑗] – column of G

End For

End For

• Verify that it still takes O(n3) operations but the leading coefficient is 
one-half of that is required for LU - decomposition 
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CHOLESKY FRAME WORKL: Ax = b
• A SPD and A = GGT

• Ax = (GGT)x = G(GTx) = Gy = b

• Compute G: A = GGT – O(n3) operations

• Solve Gg = b – Lower triangular – O(n2) operations

• Solve GTx = g – upper triangular – O(n2) operations

• Total cost still is O(n3) with a smaller coefficient in the leading term
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SOLUTION OF NORMAL EQUATION: (HTH)x = HTZ
• Given H ∈ Rmxn of full rank, Z ∈ Rm

• Step 1: Compute HTH – O(nm2) operations

• Step 2: Compute HTZ – O(nm) operations

• Step 3: Compute the cholesky factor G:

(HTH) = GGT – O(n3) operations

• Step 4: Solve lower triangular system

Gg = HTZ – O(n2) operations

• Step 5: Solve upper triangular system

GTx = g – O(n2) operations

• Similarly for (HHT)y = Z and x = HTy
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SQUARE ROOT OF A - SPD
• Three possible definitions of square root of A – SPD

Square root of A

18

Choleskey factor G Symmetric square 
root

Eigen decomposition

A = GGT A = s2 A = VΛVT = V VT

V = VΛ½



ORTHOGONAL MATRIX
• FACT: A matrix A ∈ Rnxn is orthogonal if A-1 = AT, that is, ATA = AAT = I

• Let y = Ax and A be orthogonal. Then

y 2
2 = Ax 2

2 = (Ax)T(Ax) = xTATAx = xTx = x 2
2

Thus, 2 –norm is invariant under orthogonal transformation
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QR – DECOMPOSITION (m > n)
• FACT: Let H ∈ Rmxn. Then exists an orthogonal matrix Q ∈ Rmxm and an 

upper triangular matrix R ∈ Rmxn such that 

H = QR, QQT = QTQ = Im

ℎ11 ℎ12 ⋯ ℎ1𝑛

ℎ21 ℎ22 ⋯ ℎ2𝑛

⋮ ⋮ ⋱ ⋮
ℎ𝑚1 ℎ𝑚2 ⋯ ℎ𝑚𝑛

=

𝑞11 𝑞12 ⋯ 𝑞1𝑚

𝑞21 𝑞22 ⋯ 𝑞2𝑚

⋮ ⋮ ⋱ ⋮
𝑞𝑚1 𝑞𝑚2 ⋯ 𝑞𝑚𝑚

𝑟11 𝑟12 ⋯ 𝑟1𝑛
0 𝑟22 ⋯ 𝑟2𝑛
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑟𝑛𝑛

0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0

called the full QR decomposition

• Columns of Q are orthonormal vectors
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REDUCED QR – DECOMPOSITION (m > n)
• Let Q = [Q1, Q2],

Q1 ∈ Rmxn with first n columns of Q

Q2 ∈ Rmx(m – n) with the last (m – n) columns of Q

• R = 
𝑅1

𝑅2

R1 ∈ Rnxn with first n columns of R

R2 ∈ Rm-nxn is a zero matrix

• Then H = QR = [Q1, Q2]
𝑅1

𝑅2
= Q1R1 called reduced QR decomposition

• Q1
TQ1 = In 21



LINEAR LEAST SQUARE PROBLEM: Z = Hx
• r(x) = Z – Hx – residual

• f(x) = r(𝑥) 2
2 = 𝑄𝑇r(x) 2

2 = 𝑄𝑇(Z − 𝐻𝑥) 2
2 − (Q – orthogonal)

= 𝑄𝑇Z − 𝑄𝑇𝐻𝑥 2
2

• QTZ = 
𝑄1

𝑇

𝑄2
𝑇 Z =

𝑄1
𝑇𝑍

𝑄2
𝑇𝑍

• QTHx = QTQRx = Rx = 
𝑅1

𝑅2
x = 

𝑅1x
0

• f(x) = 𝑄1
𝑇Z − 𝑅1𝑥 2

2
+ 𝑄2𝑍 2

2
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LEAST SQUARE SOLUTION – QR METHOD

• f(x) = 𝑄1
𝑇Z − 𝑅1x 2

2
+ 𝑄2𝑍 2

2

• Only the first term depends on x

• f(x) is a minimum when R1x = Q1
TZ

• xLS = R1
−1(Q1

TZ) is obtained by solving an upper triangular system
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QR DECOMPOSITION: m < n
• Z = Hx, H ∈ Rmxn, m < n

• Then HT = QR as above, since n > m

with Q = [Q1, Q2], R = 
𝑅1

𝑅2
, Q1 ∈ Rnxm, Q2 ∈ Rnx(n-m)

R1 ∈ Rmxm and R2 ∈ Rn-mxm is a zero matrix

• Q1
TQ1 = Im and H = RTQT
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LEAST SQUARE SOLUTION – QR METHOD (m < n)
• f(x) = r(𝑥) 2

2 = (Z – RTQTx)T(Z – RTQTx)

= ZTZ – 2ZTRTQTx + xT(QRRTQT)x

• 𝛻𝑥f(x) = -2QRZ + 2(QRRTQT)x = 0

• 𝛻𝑥
2f(x) = 2QRRTQT

• xLS is the solution of: RRTQTQ = RZ
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FORM OF THE LEAST SQUARE SOLUTION

• y = QTx =
𝑄1

𝑇

𝑄2
𝑇 x = 

𝑄1
𝑇𝑥

𝑄2
𝑇𝑥

=
𝑦1

𝑦2
y1 ∈ Rm , y2 ∈ Rn-m

• RRT+ =  
𝑅1

0
[𝑅1

𝑇 : 0 ] = 𝑅1𝑅1
𝑇 0

0 0

•
𝑅1𝑅1

𝑇 0
0 0

𝑦1

𝑦2
= 

𝑅1𝑍
0

=> 𝑅1𝑅1
𝑇y1 = R1Z, y2 is arbitrary 

• Y1 is obtained by solving a lower triangular system  𝑅1
𝑇y1 = Z
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THE LEAST SQUARE SOLUTION: m < n

• X = Qy = Q
𝑦1

𝑦2
= [Q1 Q2] 

𝑦1

𝑦2
= Q1y1 + Q2y2

• Since y2 is arbitrary, there are infinitely many solutions

• Clearly, xLS = Q1y1 = Q1(𝑅1
−𝑇Z)

• 𝑥 2
2 = 𝑄1𝑦1 2

2 + 𝑄2𝑦2 2
2 (𝑄1

𝑇Q1 = Im, 𝑄1
𝑇Q1 = In-m)

= 𝑦1 2
2 + 𝑦2 2

2

≥ 𝑦1 2
2 = 𝑥𝐿𝑆 2

2
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SUMMARY: QR ALGORITHM
• Over determined case H ∈ Rmxn, m > n

• Step 1: Compute Q1 ∈ Rmxn and R1 ∈ Rnxn such that H = Q1R1 using 

Gramm-Schmidt orthogonalization method – See below

• Step 2: Compute 𝑄1
𝑇Z 

• Step 3: Solve upper triangular system R1x = 𝑄1
𝑇Z and xLS = 𝑅1

−𝑇(𝑄1
𝑇Z)
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SUMMARY: QR ALGORITHM
• Under determined case H ∈ Rmxn, m < n

• Step 1: Compute HT = Q1R1, Q1 ∈ Rnxm and R1 ∈ Rmxm

• Step 2: Solve the lower triangular system 𝑅1
𝑇𝑦1 = Z 

• Step 3: xLS = Q1y1 = Q1(𝑅1
−𝑇Z)
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GRAMM- SCHMIDT ORTHOGONALIZATION
• Let H = [h1, h2, … hn], hi ∈ Rm , 1 ≤ i ≤ n, m > n

• Let the columns of  are linearly independent

• Find Q = [q1, q2, … qn], qi ∈ Rm, 1 ≤ i ≤ n and 𝑞𝑖 𝑖=1
𝑛 is an orthogonal 

system:

qi
Tqj = 0 i ≠ j

= 1 if i = j

• Problem: Given ℎ𝑖 𝑖=1
𝑛 , find 𝑞𝑖 𝑖=1

𝑛 with the above properties
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ALGORITHM – AN IDEA

• Set q1 = 
ℎ1

𝑟11
with r11 = ℎ1 2 and 𝑞1 = 1

• Set q2 = 
1

𝑟22
[h2 – r12q1] – 2 unknowns: r12, r22

Thus, 0 =q1
Tq2 = 

1

𝑟22
[q1

Th2 – r12] 

Therefore, r12 = q1
Th2 and r22 = h2 – r12q1

• In general: j – unknowns (1 ≤ j ≤ n)

qj = 
1

𝑟𝑗𝑗
[hj –  𝑖=1

𝑗−1
𝑟𝑖𝑗𝑞𝑖] 

=>  rij = qi
Thj 1 ≤ i ≤ j-1

rji = hj –  𝑖=1
𝑗−1

𝑟𝑖𝑗𝑞𝑖
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QR – ALGORITHM – PSEUDO CODE
• Given {h1, h2, h3, … hn},   hi ∈ Rm, m > n linearly independent

• Find {q1, q2, q3, … qn}, hi ∈ Rm, orthonormal

Step 1: Repeat the following steps 2 to 5 for j = 1 to n

Step 2: vj = hj

Step 3: For i = 1 to j -1

Compute: rij = qi
Thj

Update: vj = vj – rijqi

Step 4: Compute norm of vj: rij = vj

Step 5: qj = 
vj

𝑟𝑗𝑗
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SINGULAR VALUE DECOMPOSITION - SVD
• Let H ∈ Rmxn be of full rank 

Grammians (m > n)

• Let (λi, vi) be the n-eigenvalue eigenvector pair for HTH with 

λ1 ≥ λ2 ≥ … ≥ λn > 0

• (HTH)vi = λivi 1 ≤ i ≤ n 

• V  = [v1, v2, … vn],  Λ = Diag[λ1, λ2, … λn]

• V is orthogonal matrix, VTV = VVT = I

• (HTH)V = VΛ or  (HTH) = VΛVT 33

• HTH ∈ Rnxn • HHT ∈ Rmxm

• Rank (HTH) = n • Rank (HHT) = m

• Symmetric • Symmetric

• Positive definite • Positive semi-definite



EIGENVALUES AND VECTORS OF HHT

• Define ui = 
1

𝜆𝑖
Hvi, ui ∈ Rm , 1 ≤ j ≤ n

• (HHT)ui = (HHT)
1

𝜆𝑖
Hvi

= 
1

𝜆𝑖
H(HTH)vi

= 
1

𝜆𝑖
H𝜆𝑖vi = 𝜆𝑖Hvi = 𝜆𝑖ui

• Thus, (𝜆𝑖, ui), 1 ≤ j ≤ n are the eigenvectors of HHT

• The rest of (m-n) eigenvalues of (HHT) are zeros
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EIGENDECOMPOSTION OF HHT

• Set U= [u1, u2, … un] ∈ Rmxn

• ui = 
1

𝜆𝑖
Hvi =>UΛ½ = HV

• UTU= (HVΛ-½)T(HVΛ-½)

= Λ-½VT(HTH)VΛ-½

= Λ-½VTVΛΛ-½

= I (because VTV = I)

• Columns of U are orthonormal
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SVD OF H

• ui = 
1

𝜆𝑖
Hvi => Hvi= ui 𝜆𝑖

• HV =UΛ½ or H =UΛ½VT is called the SVD of H

• H = [u1, u2, … un]

𝜆1
 1 2 0 ⋯ 0

0 𝜆2
 1 2 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 𝜆𝑛
 1 2

𝑣1
𝑇

𝑣2
𝑇

⋮
𝑣𝑛

𝑇

• H =  𝑖=1
𝑛 𝜆𝑖𝑢𝑖𝑣𝑖

𝑇

• 𝜆𝑖 are eigenvalues of HT and 𝜆𝑖

 1 2 are the singular values of H by definition 36



SVD BASED SOLUTION OF LEAST SQUARES
• Z = Hx, H ∈ Rmxn – full rank

• H =UΛ½VT, VVT = VTV = In,UTU= In

• f(x) = (Z – Hx)T(Z – Hx)

= (Z –UΛ½VTx)T(Z –UΛ½VTx)

= ZTZ – 2ZTUΛ½VTx + xT(VΛVT)x

• 0 = 𝛻𝑥f(x) = -2VΛ½UTZ – 2(VΛVT)x

• xLS is the solution of: (VΛVT)x = VΛ½UTZ 

• xLS = VΛ-½UTZ 
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ALGORITHM - SVD
• Given H ∈ Rmxn

STEP 1: Compute H = UΛ½VT

STEP 2: Compute UTZ – (rotation)

STEP 3: Compute y =Λ-½UTZ – (Scaling)

STEP 4: Compute x* = Vy – (rotation)
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EXERCISES 
13.1) Consider the matrix H ∈ R4x16 built using the 2-D bilinear 
interpolation in Module 3.6

(a) Pick for pairs (ai, bi), 1 ≤ i ≤ 4 of uniformly distributed random 
numbers in range [0, 1]

(b) Compute the elements of the rows of H and verify that they add up 
to 1

(c) Compute HHT

(d) Generate observation Zi = 75 + Vi, Vi ~ N(0, σ2) for 1 ≤ i ≤ 4 
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EXERCISES 
13.2) Develop your own MATLAB program to do the following

(a) LU - decomposition

(b) Solving lower and upper triangular system

(c) Cholesy decomposition

(d) Gramm–Schmidt orthogonalization

(e) SVD
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EXERCISES 
13.3) 

(a) Apply Cholesky decomposition to solve (HHT)y = Z and compute    
xLS = HTy

(b) Compute  Z = Z − HxLS and r(xLS) = Z -  Z. Compute r(xLS) 2

13.4) Apply QR Decompostion to H using Gramm-Schmidt and slove the 
resulting linear least square problem

13.5) Apply SVD to H and solve the resulting least square problem

13.6) Compare the norm of the residual r(x) = Z -  Z computed using the 
three methods
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