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Problem area of interest:Alphabet soup

Time Series(TS) Analysis(TSA) - univariate/scalar
- multivariate /vector

PCA/EoF (earlier modules)
SSA is EoF applied to scalar TS
Multi-channel SSA-(MSSA) : EoF applied to vector TS
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Classical TSA

@ TSA is a chapter in the vast and growing discipline of
stochastic process in discrete time

@ TSA had its beginnings in 1920's

@ Developed by Yule, Walker, Wold, Wiener Kolmogorov,
among others
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Goals of TSA

@ Given a TS, quantify the linear dependence structure using
Auto Correlation Function(ACF) and Partial Auto Correlation
Function(PACF)

e Identify a class of (empirical) discrete time stochastic
dynamic models that could capture ACF and PACF

o Estimate the parameters of the chosen models
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Goals of TSA - continued

@ Compare the adequacy of the models using several measures -
residual, Akaike information criterion etc.,

@ Choose a very small number of "good” modules

@ Develop algorithms for prediction and prediction error

S.Lakshmivarahan Module 7.1 5/26



Sources of TSA

e J.D.Hamilton(1995) Time Series Analysis, Princeton
university press

e P.S.Brockwell and R.A.Davis(2013) Time Series Theory and
Methods Springer

e W.A Fuller(2009) Introduction to Statistical Time Series,John
Wiley and sons
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What is SSA?

@ SSA is an alternate method to analyze time series data

@ It starts by generating a data/trajectory matrix x € R™*"
from the given scalar TS:{y;/1 <t < N}

@ SSA follows the foot steps of EoF analysis applied to x
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What is SSA?

@ The idea is to reconstruct the signal, trend, seasonal cycles
and predictable parts and noise components using the
spectral properties of the covariance matrix ¥~ = %XXT

@ Since the eigenvalues of the Gramian, %XXT are the singular

values of x, the name Singular Spectrucm Analysis
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Origins of SSA

@ SSA was developed rather recently:

@ J.M.Colebrook(1978)" Continous plakton records:Zooplakton
and environment, North-East Atlantic and North Sea,
1948-1975" ,Oceanologica ACTA, vol 1, pp 9-23

e D.S.Broomhead and G.P.King(1986) " Extracting Qualitative
Dynamics from Experimental Data” Physica, 20D, pp
217-236

o K.Fraedrich(1986) " Estimating the dimension of weather and
climate attractor”, Journal of Atmospheric Sciences, vol 43,
pp 419-43
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Literature on SSA

e J.B.Elsener and A.A.Tsonis(1996) Singular Spectrum
Analysis, plenum press, New york

e N.Golyandina, V.Nekrutkin and A.Zhigljavsley(2001) Analysis
of Time Series Structure: SSA and related techniques
Chapman and Hall

e M.Ghil, et.al.(2002)" Advanced spectral methods for climate

time series”, Reviews of Geophysics, vol 40, 3-1 to 3-41 -
Deals with SSA,MSSA and applications
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From TS to Data/trajectory matrix: x € R™*"

o Let {y:|1 <t < N} be the given scalar TS data
@ Pick an integer m : 1<m§%and letn=N—-—m+1

@ m is called the window length and n is the number of
continuous windows that can be formed from the given time
series of length N
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Columns of x

e The jt column, x4j of x is given by the m entries in the TS

starting from location j where 1 < j < n:

T
Xyj = (}/j7)/j+1, s ,yj+m—1)

@ Then

X
X = [Xe1y X2y -« -y Xen] € RTX"

matrix associated with the TS, y;
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[llustration

@letN=6andm=3. Then,n=N-m+1=4

o yr={y1,y2, Y3, ¥4, ¥5,¥6}

° Xj = (¥, Yj+1,---

X11  X12
@ X = | Xo1 X22
X31 X32

s Yjtm—1) T
X13  X14 yr y2
X23 Xe4| = Y2 y3
X33 X34 Y3 Y4
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Structure of x

@ From the definition:
x=[xj] and xj=yitj-1 (3)

@ The matrix x is such that elements along the anti diagonal for
which (i +j) = ¢ for 2 < ¢ < m+ n are the same

@ Such matrices are called Hankel matrices
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Origin of trajectory matrices: Dynamical system

@ Trajectory matrices were introduced to solve a class of inverse
problems in dynamical system theory

@ Let f: R" — R" be a smooth vector field and

%= f(x) )

be the given dynamical system(DS)
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The direct problem

@ Given the DS in (4) and an initial condition xp € R",
numerically compute the time series x(t) for t > 0

@ The standard Runge - Kutta methods is often used for this
purpose

S.Lakshmivarahan Module 7.1 16 / 26



The inverse problem

@ Given only the time series of the it component, x;(t) of the
solution x(t) of (4), infer the qualitative properties of the DS
that generates x(t)

@ These include fixed points and their stability, properties of
altractors and their properties etc.,
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Origin of the Trajectory matrix

@ Trajectory matrix was introduced in the context of solving the
above inverse problem: Derive the phase space
characterization, from the given TS using the trajectory
matrix defined above

e Packard et.al (1980)
o Ruelle (1980)
o Takens (1981)
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Literature on DS and nonlinear Time Series

@ There is a rich literature on the study of nonlinear time series
in the context of chaotic dynamics

@ References are given at the end of this module
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Multi-channel SSA : MSSA

o Let y; € RE, for some finite integer L > 1 be the given vector
of time series for 1 <t < N

@ Define the integers m and n as above

@ MSSA starts a trajectory matrix x € R™*" by stacking
together the trajectory matrices x(i) € R™*" for each
component y;, t of the vector y(t)
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An illustration

oletL=3 N=6,m=3andn=14
o The given series:y; = (yir, yot,¥3¢) T € R3:1<t< N
@ Then
Y11 Y12 Y13 Y14
x(1)= |y12 »13 Y14 Y15 (5)
Y13 Y14 Y15 Y16
be the 3 x 4 trajectory matrix built out of the first
component {y;¢+|1 <t <6} of the given vector time series

{1 <t <6}
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[llustration - continued

o Likewise build trajectory matrices x(2) and x(3) from the
second and third components of {y: € R3|1 <t < N}

@ Then
m x(1)
x= m |x() (6)
m Lx(3)

is the trajectory matrix for the MSSA of {y;}
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[llustration - continued

o Given x € RL™*n compute the covariance matrix

1
s — ;XXT c RLmXLm (7)

@ X contains the auto and cross covariances of the components
of the vector {y;}

@ The singular values and vectors of x are closely related to the
spectrum of
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Summary

vt €R Trajectory x € Rmxn EoF
1<t<N mgtsrz } Analysis
c RL Trajectory x € RLmxn EoF
ye ’ matrix - .
1<t<N MSSA Analysis

@ Except for the dimensionality, mathematical analysis of SSA
and MSSA are quite similar
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References: Use of trajectory matrix

@ N.H.Packard, J.P.Crutchfield, J.D.Farmer and
R.S.Shaw(1980)" Geometry from a time series”, Physical
Review Letter, A 45, 712-716

o D.Ruelle (1980)" Strange attractors” ,Mathematics Intelligence
m,2,37-48

o F.Takens(1981)" Detecting strange attractors in turbulence”
in: D.Rand and L.S.Young(Eds) Dynamical Systems and
Turbulence, vol 898 of lecture notes in Mathematics, pp
366-381, Springer,Berlin
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References

e H.Kanty and T.Schreiber(1997) Nonlinear Time series
Analysis,Cambridge University Press

@ H.Tong(1993) Non-linear Time series Analysis: A Dynamical
Systems Approach, oxford university press, oxford
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Scalar time series

o Lety = {y+|1 <t < N} denote the given scalar time series

@ Examples: y; is the global average temperature for year t

@ y; is the total number of deaths due to road accidents in the
year t

@ y; is the Facebook stock price at the end of the day t
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Trajectory / (lagged) data matrix x € R™*"

o Let 1< m< N/2and n = N-m+1. Then m<n

@ Define the jth column, x,; of x:

T
Xyj = (yj,yj—‘,—lv cee ayj—O—m—l)

@ The data matrix:

1
— — mxn
x = [xj] = \ﬁ[x*l,x*g, .oy Xn] €ER
where
Xij = Yit+j-1
S.Lakshmivarahan Module 7.2
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Example

e N=6 m=3n=4,/n=2

oy ={y1,y2,¥3, ¥4, ¥5,¥6}
yi Y2 Y3 ya

ox=3|y y3s ya ys5| =
V3 V4 Y5 Y6

X11
X21
X31

X14
X24
X34

X13
X23
X33

X12
X22
X32

o Clearly the Hankel structure of x is evident:

Xjj = Yiyj-1 fori+j=c

where 2 <c<n+m

S.Lakshmivarahan

Module 7.2

4/37



A geometric view of x

o It is useful to consider the j column xyj of x as coordinates
of the j* point in R™

@ Thus, the trajectory matrix, x describes the distribution of n
points in R™

S.Lakshmivarahan Module 7.2 5/37



Phase space trajectory induced by x

@ The n points in R™ can be temporally ordered by connecting
the point x,; and x,(j;1) by a line segment for 1 </ <n

@ The resulting trajectory consisting of (n-1) piece-wise
continuous line segments as n — oo provides good amount of
qualitative information on the system that generates the
original time series
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Sample second moment matrix: Version 1

o Let
T
4
n
1 X2 1
T * T
Y1) =xx" == [x1 xo X | | = - E Xk Xk
- k=1
X,

(5)
which is symmetric and is the average of the n outer product
matrices
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Example of X

@ For the example with N =6, m = 3 and n = 4:

4 4
1 Zk 1yk Zk:% YkYk+1 Zézl YkYk+2
(1) = Zk A VKYK=1  Dorea VB Doneo YkVk+1

Zk 3 YkYk—2 22:3)/k)/k—1 22:3)’;3 ®)
6
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General structure of X: Diagonal elements

o Using xjj = yiyj_1:

n+i—1

1o 1 ¢ 1
zi(l) = > xiwxix = . Y Vi = = Yok (M
k=1 k=1 k=i
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General structure of X: off-diagonal elements

2i(1) = Z XikXjk

1
= ZYi—i-k—lyj—i-k—l (8)
k=1
n+l 1

== Z ViV ljil
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Asymptotics: Version 2

o Let N be very large and m be small such that n =~ N

@ In this case:

N
1
i(2) = > vi=c )
k=1
A
5@ = gy 2o Wk = e (10)
k=1
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Asymptotic approximation to X

e From (9) and (10)

()] (5] 2 oo Cm—1
C1 (@)) 1 ... Cm—2
2(2) ~ Co C1 (o4} .. Cm—=3 (]_]_)
|Cm—1 Cm-—2 Cm-3 ... < |

S.Lakshmivarahan Module 7.2 12 /37



Symmetric and Toeplitz Structure of ¥(2) in (10)

@ The second moment matrix £(2) in (11) in addition to being
symmetric, also inherits the Toeplitz structure:

2(2) = [ZU(Q)] and Z,'J'(Q) = C|j,,'| (12)

@ That is, elements along the principal diagonal are the same as
are those along the diagonals parallel to it
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Properties of ¥(1) and X(2)

e First choice (Broomhead and King (1986)): X(1) eR™* ™ is
computed using (7) and (8) which is symmetric

@ Second choice (Vautard and Ghil (1989)): X(2) eR™*™ is
computed using (9) and (10) which is symmetric and Toeplitz
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Detrending

@ The raw/original time series y; may have non-stationary
components such as trend(linear/non-linear)

@ Estimate the trend using standard OLS method

@ Detrend the given series by subtracting the trend component
from the original series
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Centering and normalization

@ The centered version is obtained by subtracting the over all
sample mean from each term of the series

@ A centered series is also known as the anomaly series

@ Normalized version is obtained by dividing each element by
the overall sample standard deviation

@ When there is a comparison of methods or different series, it
is useful to work with normalized series
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Comments

@ Centering does not remove the trend

o If y; is a centered second-order stationary series, then for

large N
(4} rn rn e I'm—1
rn n n eeo I'm—2
Y(2)=| o ro ... Im-3 (13)
Lf'm-1 fm-—2 ... ... n |

is the symmetric, Toeplitz auto covariance matrix
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Comments

o If y; is a normalized second-order stationary series, then for

large N
[ 1 P1 p2 i Pm—1]
p1 1 p1 - Pm=2
Y2)=| P2 m 1 Pm-3 (14)
|1 Pm—1 Pm-2 Pm-3 --- 1

is the symmetric, Toeplitz auto correlation matrix
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Comments

@ Since there is an intrinsic difference between ¥ (1) and ¥(2)
especially when N is small, great caution must be exercised in
interpreting the results that are dependent on the properties
of these matrices
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Comments - white noise

@ Another 500 pound Gorilla in the room is the property of the
(stochastic) noise, e; component that induces randomness to
Yt

@ In many applications, this noise £; is modeled as a white
noise: E(et)=0 E(eres) =0 for t#s
=g fort=s
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Comments - Red noise

@ In many geophysical applications, there is evidence that this
corrupting noise €; is not a white noise

@ Such a red noise is often modeled using a member of the
ARMA(p, q) family

@ Presence of red noise further complicates the analysis and the
conclusions

S.Lakshmivarahan Module 7.2 21/37



Challenge of the red noise

@ Allen and Smith (1994) provided a comprehensive discussion
of the pitfalls in the analysis of time series using the SSA
when the noise is not white

@ As a further guide to the analysis, they proposed a Monte
Carlo SSA that is useful in testing hypothesis relating to the
properties of noise
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SSA

@ Let X € R™*™ be the matrix computed using either of the
two method using the raw, centered or normalized time series

@ Assume that x is of full rank, that is
Rank(x) = min{m,n} = m (15)

since m<n
@ Then, (1) is SPD and ¥(2) is SPD and Toeplitz
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Eigen decomposition of

o Let (A, u;), 1 < i < m be the eigenvalue vector pair for ¥,
that is, X u; = u;A\; with

MM > . > A >0 (16)
e Setting u = [u1, Up,...,Uyn] € R™™
A= Diag()\l,)\g, PN ,)\m)
°
Yu=uhuw' =uTu=I, (17)
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Principal patterns and components

@ The eigenvector u;,1 < i < m that constitute an orthogonal
basis for R are the principal patterns

@ The principal components are obtained by projecting the
columns of x onto these principal pattern vectors
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Principal component matrix: A € R™*"

@ The PC matrix A is given by

A=UTxe R™"

@ That is,
uy’
uy
A= [A'J] = : [X*l X2
U
o

Ajj = u] x,j(inner product)
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Orthogonality of the rows of A

AAT =uTxxTu=u"Su=A (20)

@ Each of the n columns of A give the coordinates of the n
points with respect to new orthonormal coordinate system
defined by the columns of u
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Example: Trajectory matrix

o Consider a series {1,2,3,4,3,2,1} with N =7. Set m = 3
andn=N-m+1=5

@ The trajectory matrix

Sl
o1
w N =

3
2| € R3S (21)
1

W N
w b W
N W b
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Example:2, u, A

78 7.6 6.2
e L=3(1)= |76 84 7.6
62 7.6 7.8

o
A = Diag(0.093,1.600,22.307) = Diag(As, A2, A1) (22)

—0.4324 —0.7071 0.5595
e u=| 0.7912 —0.0000 0.6115| = [u3, u2, u1]
—0.4324 0.7071 0.5595
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Example:PC matrix A

—0.0658 —0.0987 0.2551 —0.0987 —0.0658
o A= 0.6325 0.6325 —0.0000 —0.6325 —0.6325
15478 23217 25952 23217  1.5478

o Verify AAT = A
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Recovery of x

@ In the light of (17), from (18), it is immediate that
x=uA=uu"x (23)

@ That is, the original matrix, x can be recovered from A using
the operation uA
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Reconstruction of the signal: x(s) € R™*"

@ In the light of ordering of A's in (16), define an integer k such
that 1 < k < m and

k m

DA=1-8)> N (24)
i=1 i=1

@ Define

Im(m — k) = Diag(0,0,...,0,1,1,...,1) (25)

where 0's are k in number and 1's are m-k in number
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Expression for x(s)

@ Then
x(8) = u[ly — Im(m — K)]u" x

= (Zf'(:l ”i“iT)X

gives the signal component. The noise component is

x(n) = x = x(s) = u[lm(m — Kk)]u" x
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Example - continued

e From (22): A1 + A\a+ A3 =24

o M =0.929,%2 =0.0667, 3 = 0.00388
o Verify that A1 4+ A> = 23.907 > 0.99(\1 + A2 + A3) = 23.897
where 5 =0.01

x(s) = (ultzl;—i- uzuggx 28)

= uzuz X
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Example - continued

e Verify that (since n = 5)

0.9364 1.9046 2.3467 3.9046 2.9364
V5 x (n) = |2.1164 3.1747 3.5486 3.1747 2.1164
2.9364 3.9046 3.2467 1.9046 0.9364
(29)
is the signal part of the x recovered by the SSA analysis
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Recovery of the signal part of the TS

@ The signal recovered in (29) does not inherit the Hankel
structure as the original data matrix
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What is SSA?

@ SSA is a powerful tool for the analysis of time series(TS)
using ideas from
e multivariate statistics
e geometry
e dynamical system
e signal processing
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The goal of SSA

e To additively decompose a given TS as a sum of
"independent” components that capture the
e time varying trend
e oscillatory component
@ noise
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Two stages of SSA

1 Decomposition stage - two steps

1.1 Embedding
1.2 SVD Analysis

2 Reconstruction stage - two steps

2.1 Grouping
2.2 Diagonal averaging
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Comments on the two approaches to SSA

SSA
Module 7.2 Module 7.3
@ Exploits the eigen e Exploits the SVD of
decomposition of the x € RmMxn
covariance matrix of o Developed by the
x € R™*" Russian School
o Developed in Europe and o Exploits the idea of
USA grouping based on

@ Exploits the properties of
the principal patterns

S. Lakshmivarahan

the notion of
" separability”
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References
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Notation

o Let {y:|1 <t < N} be the given scalar TS, where N is large.
oletl<m<N/2andn=N-m+1
@ Define a lagged (Column) vector for 1 < j < n:

X*j:(yjayj-‘rlv"-;yi-i-m—l)TE R™ (1)
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Step 1.1 Embedding

@ The given series is split into n lagged column vectors Xx,;,
1<j<n

@ Define the trajectory matrix: x € R™*"

X
X = [Xe1y X2y -« -y Xen] € RT*"
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Example

@letN=7, m=3,n=5
oy ={y1,y2,¥3, ¥4 ¥5, Y6, y7}
Yi Y2 Y3 ya ¥
ox=|y2 y3 ya ¥5 yo| € R¥®
Y3 ya ¥Ys Yo Y7
o Verify: x; = yi+j—1 and matrix x inherits the Hankel structure
- elements across the anti-diagonals (i + j = k, a constant)
are the same
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Step 1.2 : SVD of x eR™*"

@ Sincel<m<N/2andn=N-m +1, we have m < n
@ Let x be full rank matrix: Rank(x) = min{m, n} = m
@ Then (xxT) is SPD and

(xxT)u = ul (3)

be the eigen decomposition of the smaller Gramian xx
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SVD of x

o u=[u,up,u3....,uy] € RMXM

e Let A = Diag(A1, A2, ..., Am) :

/\12)\22)\m2>\m

@ Define
1 7
v, = X U
VA
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SVD of x

) V={V1,V2,V3,...,vm} e RMM and
VTV: IITI
(XTX)V: vA

@ A dual relation:

1/2
XTU,' = VI-A’_/
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SVD of x

o From (5)

XTu = V/\1/2 or xT — VAl/zuT
e From (8): SVD of x:

(9)

(10)

S. Lakshmivarahan
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x as a sum of rank-1 matrices

e From (10):
m
X = Z)\,-u,-v,-T (11)
i=1

o (\i,uj,v;) - ith eigen triple of x, 1 < i< m

@ These m eigen triples are the basic building blocks for the
reconstruction phase used in identifying the trend, oscillatory
and noise components.
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Energy in x

@ Recall: T )
[[Aiujv; ||F = A

INiurvi™ + N [[F = A7+ A

e From (11): The total energy in x:

m
IxI[F = A7
i=1
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Inherent optimality of SVD

o Let, forl <r <m,
.
X(r) = ZA;U,‘V,-T € Rmxn (14-)
i=1
e From (12):
r
Ix(NI[F=>_ A (15)
i=1
@ Hence

[l = x()II? = Z A (16)

i=r+1

In view of the ordering of the A's in (4b), it is immediate that
x(r) is the best rank r approximation of x
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Step 2.1: Grouping of indices

o Let [m =1{1,2,3,...,m}
o Let forsome 1 < p < m, let s, C[m]
o Grouping: Let {s1,s,...,sp} be partition of [m]

p
S,'ﬂSj:@, USJ'Z[m]
Jj=1
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Resulting decomposition of x

o Consider the i*" group s; of |s;| indices
e Define a matrix x(i) € R™*" of Rank(x(i)) = |si| as

x(I) = Sjes iy

o Clearly,

where p is the number of sets in the partition of [m]
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Step 2.2 - Diagonal averaging

@ The matrix x(i) in (17) need not be a Hankel matrix

@ Hankelization of x(i) relates to creating a Hankel matrix, x(i)
= Hx(i) for the x(i)

@ This is the done by replacing each anti-diagonal in x(i) by the
average of the elements in that diagonal in x(i)
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Example of Hankelization

o Let
a1 ar a3
A= laxn ax ax
a31 d32 4as3

Z1 2o 2Z3 Z4
/= \zn z3 zz zy
Z3 24 2Zn Zp
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Example (continued)

@ Then
71 = an

1
7= 5(312 + a21)

1
z3 = —(a13 + ax + as1)

3
1
zZy = 5(314 + ax3 + az)
1
75 = 5(324 + as2)
Z6 = d34
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Algorithm for Hankelization

o Let A = [a;] € R™" matrix
o Let B = HA = [B;] € R™"

slzp Yaps p for2<s<m-1
B = lzp 13p,s—p form<s<n+1
FTRETT Lpes—ndps—p forn+2<s<n+m

(22)
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Hankelize the sum in (18)

@ Recall that
° H(A+B) H(A) + H(B)
o H(A) = Aif Ais a Hankel matrix.

@ Operating both sides of (18) by H:
p

x =) H(x(D) = x(i) (23)
i=1
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Decomposition of y;

@ Recall: Unique relation between time series and Hankel
trajectory matrix

o Let {y:|1 <t < N} be the TS for x and {y;(/)|1 <t < N}
be the TS for (i)

@ Then (23) becomes:

ye= )Y yi(i)foreach1 <t <N (24)
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Comments: choice of L

@ The results of the first stage of decomposition critically
depends on the window length m

o If we already know that the given TS has periodic
components with period T - say using spectral analysis, then
L is proportional to this period.

@ In any case L must be large but less than N/2, half the length
of the series
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Comments: challenge of grouping

@ Of the four steps involved, embedding, SVD and
Hankelization are quite algorithmic and can be easily
implemented

@ Grouping is the most demanding part of this approach to SSA

@ Algorithm for optimal grouping is still evasive, extra /
supplementary information about the series could be used as
a guide to grouping
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Guide to grouping - Scree plot

@ Identifying breaks in the scree plot - plot of the eigenvalues
Vs its rank, could help identify signals from noise

@ Presence of white noise corresponds to a constant lower
ceiling in the scree plot

@ It is known that a harmonic component produces a pair of
very close singular values
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Guide to grouping - Periodogram

@ Compute and plot the periodogram for the TS and identify
the frequency with spikes in the spectrum

@ We can then search for the eigen triple whose frequencies
coincide with those identified by the spikes
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Role of separability in grouping

@ To partially automate the grouping operation, a notion of
"separability” based on a "weighted correlation” is introduced

@ Two series are separated from each other if their weighted
correlation is low
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Choice of Weights

@ Let f; and g; be the two time series with 1 <t < N
oletl1<m<N/2andn=N-m+1

o Let
wx = min{k,m;N —k+1} for 1< k<N
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Example

o letN=6, m=3,n=4
@ Then: wy = min{k, 3, 7-k}
o Clearly,

k
W,

L
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Weighted inner product of two TS

o Let {f;} and {g:} be the two series for 1 <t < N
@ The weighted inner product between {f;} and {g:} is

N

<f, g >w= Y _ wifigk (26)
k=1

S. Lakshmivarahan Module 7.3 33/37



N
AR =< £ F =S wif?

(27)
k=1
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Weighted correlation between f; and g;

<f,g >y
pulfig)= 18w 28
GFE® (28)

is the weighted correlation

e The idea is: if p,(f,g) is small, then the series {f;} and {g:}
are almost w-orthogonal and do not share common
information
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An application

1/2

o Given the m-eigen triples (\;”", uj, v;) first compute

1

x() =N uv] 1<i<m (29)

@ Let X(i) be the Hankelized x(i) and {y:(/)|1 < t < N} be the
corresponding TS
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Compute their W-Correlations

@ Given x;(i) for 1 < i < m, compute
R = [Ry] € R™™

where
Rij = pw(xe(i), % (J)) (30)

@ By examining the off-diagonal entries of this symmetric
matrix, we may isolate the correlated pairs from others which
in turn provide useful information for grouping
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PCA

e Given a random field x € R™(indexed by points in a spatial
domain S C R k = 1,2,3), the goal of PCA is to
decompose x as a linear combination of intrinsic spatial
patterns which are related to the eigenvectors of cov(x) where
the variance of the random coefficients in the linear
combination are directly related to the corresponding
eigenvalues of cov(x)

o If the eigenvalues of cov(x) are distinct and decreasing, this
additive decomposition is often used as basis for " removing
the chaff(noise) from the corn(signal)”

S.Lakshmivarahan Module 17.1 2/32



CCA

e Given two random fields x; € R™ and xy € R™(defined over
two spatial domains S; and S,) the goal of CCA is to express
each field as a linear combination of its own spatial patterns
in such a way that the corresponding spatial patterns exhibit
maximum correlation

@ An example : x; average SST over equatorial pacific during a
month and x; could be the average rain fall across the USA
in that same month
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Second-order properties of two random fields

@ Let x; € R™ and x» € R™ be two random fields of interest

E(x)=m and E(y)=p2 (1)
cov(x) = E[(x — pu)(x — 1) "] = T € R™*™  (2)

COV(Y) = E[(y - Mz)(y — /,L2)T] = Yy € RM2XM (3)
@ Assume that ¥1; and ¥ are SPD
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Covariance between x; and x,

cov(x1,x2) = E[(x1 — p1)(x2 — p2) "]

= 212 S RMLxm2 (4)
cov(xz2,x1) = E[(x2 — p2) (31 — p11) "]
=Yy =%, € R™XM (5)
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Normalize x; and x

e Let D; € R™*™ = Diagonal matrix with the diagonal
elements of Y11

D, € R™>*M2 = Diagonal matrix with the diagonal
elements of Xo»

@ Normalize x; and x»:

@ Then Lo
X1=D; P — )

% =D, V(¢ — )

are the centered and normalized versions of x; and x>
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COI‘(Xl,XQ) = COV()?l,)?g) = E[)?l()?g)T]
_ D—1/2

L PEpDy P e R

(7)
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Spatial patterns for random fields x; and x>

o Let
F=I[A,fy. .. ,fm]€R™*™ (8)

be a matrix whose linearly independent column vectors span
R™ and constitute m;y distinct spatial patterns for x;

@ Similarly, let

G:[gl,g2,.--,gm2] € Rmxm (9)

be that for x»
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Expansion of the random fields using spatial patterns

@ By resolving x; along each of the spatial patterns f;, it follows

that
mq m1
xi=) 0 f)fi=) (aif) (10)
i=1 i=1

where the coefficients a; = (x{ f;) of the linear combination
in (10) are random variables since x; is random
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Expansion - continued

@ Similarly, resolving x> along each of the spatial patterns gj, it

follows that
my my
= (% &g = (Bg) (11)
j=1 Jj=1

o Here again, the coefficients 3; = (x, gj) inherit their
randomness from that of x,
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Statement of the problem

@ The goal is to find the spatial patterns {f;} and {gj} such
that

cor(az, f1) > cor(ag, B2) > -+ > cor(ak, Bk) >0  (12)

and
cor(aj, Bi) is the maximum for (f;, gi) (13)

foreach i =1,2,... k < min{my, my}
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Expression for typical correlation

@ Let f € R™ and g € R™ be two typical spatial patterns for

x1 and xo
@ Define:
a=x{f and B=xg (14)
@ Then (0. §)
cov(a,
p = cor(a, ) = [var(a)var(B)]}/2 (15)
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Expression for cov(c, )

cov(a, B) = E[(xq — 1) T f(x2 — 112) " g]
= chov(xl,xz)g

=fTYng=,"Y]g

(16)
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Expression for var(«) and var(f)

Var(a) = E[(>x1 — p) " f(x1 — 1) f]
= fTE[(xs — )02 — pa) 17
=fT¥;f>0 (17)
@ Similarly:
Var(B8) = g "S228 > 0 (18)
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Typical correlation

@ Substituting (16), (17) and (18) in (15):

fT¥10g
(FTE11F )12 (g TX22g) /2

p= cor(a, B) = (19)

@ Goal is to find the pattern pair (f,g) that maximizes the right
hand side of (19)
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Scale invariance of p

@ Let a,b be two positive real constants
@ It can be verified

p = cov(a, ) = cov(aa, bp) (20)

@ That is, p is invariant under the scaling of the spatial patterns
fand g
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Normalized spatial patterns

@ With out loss of generality, assume that the patterns f and g
are normalized:

fTYpf=1 and g'¥pg=1 (21)
@ Define
F=Y1%f and g=732g (22)
@ Then L
flff=1=g"g (23)
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New expression for p

@ Substituting (21), (22) and (23) in (19), we get a bilinear
form p given by:
p=FT(5, 1/2¢- 1,5, 1/2)

= fTAz (24)

where

A= 21—11/22122—1/2 € RMmxm (25)

@ The problem is to find f € R™ and g € R™ that maximizes
p in (24) under the constraints (23)
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Lagrangian approach

o Consider the lagragian
L(f,g,a,b)=FfTAg+a(l—fTf)+b(l-g"g)

where a and b are the (scalar) unknown Lagrangian
multipliers
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Conditions for the maximum

Vil =Ag —2af =0 (27

)

vzl =ATf —2bg =0 (28)
Val=1—FTF=0 (29)

)

Vel=1-8"g=0 (30
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Optimal solution

e Conditions (29) and (30) follows from (23)

e Optimal (f,g) are obtained as the solution of (27) and (28)
written as _
Ag = 2af (31)

ATf =2bg (32)
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A related eigenvalue problem

@ Substituting (32) in (31) and vice versa:
AATF = 4abf (33)

ATAg = 4abg (34)

e That is, setting A = 4ab, it follows that (), f) is an eigen pair
of AAT and (), Z) is an eigen pair of AT A
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A first look at the solution to the problem

o Indeed, the pair (f,g) of spatial patterns that maximizes p in
(24) are given by the eigenvectors of the two Grammian
matrices AAT and AT A respectively where A € R™*™ s the
matrix of the bilinear form in (25)

@ Also, notice that the eigenvalues A are related to the product
of the Lagrangian multipliers a and b
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Properties of ATA and AAT

For concreteness, let my < my and A be of full rank
Rank(A) = Rank(AT) = min{my, my} = my

Rank(AAT) = Rank(ATA) = m,

Thus, smaller Gramian AT A is of full rank, and SPD but
longer Gramian AAT is rank deficient and symmetric positive
semi-definite
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Eigen structure of ATA

o Let (\;,&;), 1 <i < my be the eigen pairs of ATA. That is,
(ATA)g: = gi\i, & € R™ where

)\1>/\2>)\3-'->)\m2>0 (35)
o Let _ "
G = _,_a'“a ;‘l ERm2 m2
[gl .g-2 g 2] (36)
A= Dlag(>\1,)\2,)\3 .. .,)\m2)
@ Then : _ _
(ATA)G = GA
(37)

GTG=GGT = Iy,
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Eigen structure of AAT

@ Define 1
_":ﬁAgIE Rm1,1§i§m2
o Verify:
(AATYF = \ify
o Set: F=1[f,h,...,Fn] € RMXMm
@ Then _ _
(AAT)F = FA
FTF = In,
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SVD of A

@ Rewriting (38)

@ That is,
AG = FAY?2 or A= FAY2GT (41)

is called the singular value decomposition of A

@ \;'s are the eigenvalues of AT A and AAT and /) are the
singular values of A
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Back to correlation p

e From (24): For 1 <i < my,

=T , =
pPi = fi Ag:
@ Substitute for A using (41):
- T - p—
Pi = f; F/\GTgI
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Simplification of (43)

o
FTF =R A F foyo B Fiy B )]
=(0,0,...,1,...,0) = ¢ € R™ (44)
the it" unit vector in R™

° — - — -

&g 0

&'e 0
GTagi=1| _+ |=||=¢ 45
&i g g 1 ' (45)

_gr_nzTgi_ _O_
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Maximum value of p; along (f;, &)

@ Substituting (44) and (45) in (43):
pi =& N2ei= /N (46)

the it" singular value of A

@ Since \; > 0 and are ordered as in (35),it follows that p;
attains its i*" maximum value along the spatial pattern pair

(. &)
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Singular value and Lagrangian multipliers

e From (33)-(34):
A=4dab or V\=2Vab

that is singular values are proportional to the square root of
the product of the two Lagrangian multipliers

e When m; = my from (31)-(32), we get
0=FfTAg— g Af =2f"g(a— b) (47)

it follows that a = b since f7g # 0
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