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Problem area of interest:Alphabet soup

Time Series(TS) Analysis(TSA) - univariate/scalar
- multivariate/vector

PCA/EoF (earlier modules)

SSA is EoF applied to scalar TS

Multi-channel SSA-(MSSA) : EoF applied to vector TS
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Classical TSA

TSA is a chapter in the vast and growing discipline of
stochastic process in discrete time

TSA had its beginnings in 1920’s

Developed by Yule, Walker, Wold, Wiener Kolmogorov,
among others
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Goals of TSA

Given a TS, quantify the linear dependence structure using
Auto Correlation Function(ACF) and Partial Auto Correlation
Function(PACF)

Identify a class of (empirical) discrete time stochastic
dynamic models that could capture ACF and PACF

Estimate the parameters of the chosen models
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Goals of TSA - continued

Compare the adequacy of the models using several measures -
residual, Akaike information criterion etc.,

Choose a very small number of ”good” modules

Develop algorithms for prediction and prediction error
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Sources of TSA

J.D.Hamilton(1995) Time Series Analysis, Princeton
university press

P.S.Brockwell and R.A.Davis(2013) Time Series Theory and
Methods Springer

W.A.Fuller(2009) Introduction to Statistical Time Series,John
Wiley and sons
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What is SSA?

SSA is an alternate method to analyze time series data

It starts by generating a data/trajectory matrix x ∈ Rm×n

from the given scalar TS:{yt/1 ≤ t ≤ N}
SSA follows the foot steps of EoF analysis applied to x

S.Lakshmivarahan Module 7.1 7 / 26



What is SSA?

The idea is to reconstruct the signal, trend, seasonal cycles
and predictable parts and noise components using the
spectral properties of the covariance matrix Σ = 1

nxx
T

Since the eigenvalues of the Gramian, 1
nxx

T are the singular
values of x, the name Singular Spectrucm Analysis
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Origins of SSA

SSA was developed rather recently:

J.M.Colebrook(1978)”Continous plakton records:Zooplakton
and environment, North-East Atlantic and North Sea,
1948-1975”,Oceanologica ACTA, vol 1, pp 9-23

D.S.Broomhead and G.P.King(1986) ”Extracting Qualitative
Dynamics from Experimental Data” Physica, 20D, pp
217-236

K.Fraedrich(1986) ”Estimating the dimension of weather and
climate attractor”, Journal of Atmospheric Sciences, vol 43,
pp 419-43
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Literature on SSA

J.B.Elsener and A.A.Tsonis(1996) Singular Spectrum
Analysis, plenum press, New york

N.Golyandina, V.Nekrutkin and A.Zhigljavsley(2001) Analysis
of Time Series Structure: SSA and related techniques
Chapman and Hall

M.Ghil, et.al.(2002)”Advanced spectral methods for climate
time series”, Reviews of Geophysics, vol 40, 3-1 to 3-41 -
Deals with SSA,MSSA and applications
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From TS to Data/trajectory matrix: x ∈ Rm×n

Let {yt |1 ≤ t ≤ N} be the given scalar TS data

Pick an integer m : 1 < m ≤ N
2 and let n = N −m + 1

m is called the window length and n is the number of
continuous windows that can be formed from the given time
series of length N
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Columns of x

The j th column, x∗j of x is given by the m entries in the TS
starting from location j where 1 ≤ j ≤ n:

x∗j = (yj , yj+1, . . . , yj+m−1)T (1)

Then
x = [x∗1, x∗2, . . . , x∗n] ∈ Rm×n (2)

matrix associated with the TS, yt
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Illustration

Let N = 6 and m = 3. Then, n = N −m + 1 = 4

yt = {y1, y2, y3, y4, y5, y6}
x∗j = (yj , yj+1, . . . , yj+m−1)T

x =

x11 x12 x13 x14
x21 x22 x23 x24
x31 x32 x33 x34

 =

y1 y2 y3 y4
y2 y3 y4 y5
y3 y4 y5 y6


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Structure of x

From the definition:

x = [xij ] and xij = yi+j−1 (3)

The matrix x is such that elements along the anti diagonal for
which (i + j) = c for 2 ≤ c ≤ m + n are the same

Such matrices are called Hankel matrices
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Origin of trajectory matrices: Dynamical system

Trajectory matrices were introduced to solve a class of inverse
problems in dynamical system theory

Let f : Rn → Rn be a smooth vector field and

ẋ = f (x) (4)

be the given dynamical system(DS)
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The direct problem

Given the DS in (4) and an initial condition x0 ∈ Rn,
numerically compute the time series x(t) for t ≥ 0

The standard Runge - Kutta methods is often used for this
purpose

S.Lakshmivarahan Module 7.1 16 / 26



The inverse problem

Given only the time series of the i th component, xi (t) of the
solution x(t) of (4), infer the qualitative properties of the DS
that generates x(t)

These include fixed points and their stability, properties of
altractors and their properties etc.,
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Origin of the Trajectory matrix

Trajectory matrix was introduced in the context of solving the
above inverse problem: Derive the phase space
characterization, from the given TS using the trajectory
matrix defined above

Packard et.al (1980)

Ruelle (1980)

Takens (1981)
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Literature on DS and nonlinear Time Series

There is a rich literature on the study of nonlinear time series
in the context of chaotic dynamics

References are given at the end of this module
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Multi-channel SSA : MSSA

Let yt ∈ RL, for some finite integer L > 1 be the given vector
of time series for 1 ≤ t ≤ N

Define the integers m and n as above

MSSA starts a trajectory matrix x ∈ Rm×n by stacking
together the trajectory matrices x(i) ∈ Rm×n for each
component yi , t of the vector y(t)
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An illustration

Let L = 3, N = 6, m = 3 and n = 4

The given series:yt = (y1t , y2t , y3t)
T ∈ R3 : 1 ≤ t ≤ N

Then

x(1) =

y1,1 y1,2 y1,3 y1,4
y1,2 y1,3 y1,4 y1,5
y1,3 y1,4 y1,5 y1,6

 (5)

be the 3× 4 trajectory matrix built out of the first
component {y1,t |1 ≤ t ≤ 6} of the given vector time series
{y(t)|1 ≤ t ≤ 6}
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Illustration - continued

Likewise build trajectory matrices x(2) and x(3) from the
second and third components of {yt ∈ R3|1 ≤ t ≤ N}
Then

x =

n


m x(1)
. . .

m x(2)
. . .

m x(3)

(6)

is the trajectory matrix for the MSSA of {yt}
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Illustration - continued

Given x ∈ RLm×n, compute the covariance matrix

Σ =
1

n
xxT ∈ RLm×Lm (7)

Σ contains the auto and cross covariances of the components
of the vector {yt}
The singular values and vectors of x are closely related to the
spectrum of Σ
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Summary

yt ∈ R,
1 ≤ t ≤ N

Trajectory
matrix -

SSA

EoF
Analysis

x ∈ Rm×n

yt ∈ RL,
1 ≤ t ≤ N

Trajectory
matrix -
MSSA

EoF
Analysis

x ∈ RLm×n

Except for the dimensionality, mathematical analysis of SSA
and MSSA are quite similar
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References: Use of trajectory matrix

N.H.Packard, J.P.Crutchfield, J.D.Farmer and
R.S.Shaw(1980)”Geometry from a time series”, Physical
Review Letter, A 45, 712-716

D.Ruelle (1980)”Strange attractors”,Mathematics Intelligence
π,2,37-48

F.Takens(1981)”Detecting strange attractors in turbulence”
in: D.Rand and L.S.Young(Eds) Dynamical Systems and
Turbulence, vol 898 of lecture notes in Mathematics, pp
366-381, Springer,Berlin
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References

H.Kanty and T.Schreiber(1997) Nonlinear Time series
Analysis,Cambridge University Press

H.Tong(1993) Non-linear Time series Analysis: A Dynamical
Systems Approach, oxford university press, oxford
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Scalar time series

Let y = {yt |1 ≤ t ≤ N} denote the given scalar time series

Examples: yt is the global average temperature for year t

yt is the total number of deaths due to road accidents in the
year t

yt is the Facebook stock price at the end of the day t
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Trajectory / (lagged) data matrix x ∈ Rm×n

Let 1 < m < N/2 and n = N-m+1. Then m < n

Define the j th column, x∗j of x:

x∗j = (yj , yj+1, . . . , yj+m−1)T (1)

The data matrix:

x = [xij ] =
1√
n

[x∗1, x∗2, . . . , x∗n] ∈ Rm×n (2)

where
xij = yi+j−1 (3)
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Example

N = 6, m =3, n=4,
√
n = 2

y = {y1, y2, y3, y4, y5, y6}

x = 1
2

y1 y2 y3 y4
y2 y3 y4 y5
y3 y4 y5 y6

 =

x11 x12 x13 x14
x21 x22 x23 x24
x31 x32 x33 x34


Clearly the Hankel structure of x is evident:

xij = yi+j−1 for i + j = c (4)

where 2 ≤ c ≤ n + m
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A geometric view of x

It is useful to consider the j th column x∗j of x as coordinates
of the j th point in Rm

Thus, the trajectory matrix, x describes the distribution of n
points in Rm
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Phase space trajectory induced by x

The n points in Rm can be temporally ordered by connecting
the point x∗j and x∗(j+1) by a line segment for 1 ≤ i ≤ n

The resulting trajectory consisting of (n-1) piece-wise
continuous line segments as n→∞ provides good amount of
qualitative information on the system that generates the
original time series
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Sample second moment matrix: Version 1

Let

Σ(1) = xxT =
1

n

[
x∗1 x∗2 . . . x∗n

]

xT∗1
xT∗2

...
xT∗n

 =
1

n

n∑
k=1

x∗kx
T
∗k

(5)
which is symmetric and is the average of the n outer product
matrices
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Example of Σ

For the example with N = 6, m = 3 and n = 4:

Σ(1) =
1

4

 ∑4
k=1 y

2
k

∑4
k=1 ykyk+1

∑4
k=1 ykyk+2∑5

k=2 ykyk−1
∑5

k=2 y
2
k

∑5
k=2 ykyk+1∑6

k=3 ykyk−2
∑6

k=3 ykyk−1
∑6

k=3 y
2
k


(6)
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General structure of Σ: Diagonal elements

Using xij = yi+j−1:

Σii (1) =
1

n

n∑
k=1

xikxik =
1

n

n∑
k=1

y2i+k−1 =
1

n

n+i−1∑
k=i

y2k (7)
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General structure of Σ: off-diagonal elements

Σij(1) =
1

n

n∑
k=1

xikxjk

=
1

n

n∑
k=1

yi+k−1yj+k−1

=
1

n

n+i−1∑
k=i

ykyk+|j−i |

(8)
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Asymptotics: Version 2

Let N be very large and m be small such that n ≈ N

In this case:

Σii (2) =
1

N

N∑
k=1

y2k = c0 (9)

Σij(2) =
1

N − |j − i |

N−|j−i |∑
k=1

ykyk+|j−i | = c|j−i | (10)
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Asymptotic approximation to Σ

From (9) and (10)

Σ(2) ≈


c0 c1 c2 . . . cm−1
c1 c0 c1 . . . cm−2
c2 c1 c0 . . . cm−3
...

...
...

...
cm−1 cm−2 cm−3 . . . c0

 (11)
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Symmetric and Toeplitz Structure of Σ(2) in (10)

The second moment matrix Σ(2) in (11) in addition to being
symmetric, also inherits the Toeplitz structure:

Σ(2) = [Σij(2)] and Σij(2) = c|j−i | (12)

That is, elements along the principal diagonal are the same as
are those along the diagonals parallel to it
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Properties of Σ(1) and Σ(2)

First choice (Broomhead and King (1986)): Σ(1) ∈Rm×m is
computed using (7) and (8) which is symmetric

Second choice (Vautard and Ghil (1989)): Σ(2) ∈Rm×m is
computed using (9) and (10) which is symmetric and Toeplitz
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Detrending

The raw/original time series yt may have non-stationary
components such as trend(linear/non-linear)

Estimate the trend using standard OLS method

Detrend the given series by subtracting the trend component
from the original series
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Centering and normalization

The centered version is obtained by subtracting the over all
sample mean from each term of the series

A centered series is also known as the anomaly series

Normalized version is obtained by dividing each element by
the overall sample standard deviation

When there is a comparison of methods or different series, it
is useful to work with normalized series
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Comments

Centering does not remove the trend

If yt is a centered second-order stationary series, then for
large N

Σ(2) =


r0 r1 r2 . . . rm−1
r1 r0 r2 . . . rm−2
r2 r1 r0 . . . rm−3
...

...
...

...
rm−1 rm−2 . . . . . . r0

 (13)

is the symmetric, Toeplitz auto covariance matrix
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Comments

If yt is a normalized second-order stationary series, then for
large N

Σ(2) =


1 ρ1 ρ2 . . . ρm−1
ρ1 1 ρ1 . . . ρm−2
ρ2 ρ1 1 . . . ρm−3
...

...
...

...
ρm−1 ρm−2 ρm−3 . . . 1

 (14)

is the symmetric, Toeplitz auto correlation matrix
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Comments

Since there is an intrinsic difference between Σ(1) and Σ(2)
especially when N is small, great caution must be exercised in
interpreting the results that are dependent on the properties
of these matrices
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Comments - white noise

Another 500 pound Gorilla in the room is the property of the
(stochastic) noise, εt component that induces randomness to
yt

In many applications, this noise εt is modeled as a white
noise: E(εt)= 0 E(εt εs) = 0 for t 6= s

= σ2 for t = s
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Comments - Red noise

In many geophysical applications, there is evidence that this
corrupting noise εt is not a white noise

Such a red noise is often modeled using a member of the
ARMA(p, q) family

Presence of red noise further complicates the analysis and the
conclusions
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Challenge of the red noise

Allen and Smith (1994) provided a comprehensive discussion
of the pitfalls in the analysis of time series using the SSA
when the noise is not white

As a further guide to the analysis, they proposed a Monte
Carlo SSA that is useful in testing hypothesis relating to the
properties of noise
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SSA

Let Σ ∈ Rm×m be the matrix computed using either of the
two method using the raw, centered or normalized time series

Assume that x is of full rank, that is

Rank(x) = min{m, n} = m (15)

since m < n

Then, Σ(1) is SPD and Σ(2) is SPD and Toeplitz

S.Lakshmivarahan Module 7.2 23 / 37



Eigen decomposition of Σ

Let (λi , ui ), 1 ≤ i ≤ m be the eigenvalue vector pair for Σ,
that is, Σui = uiλi with

λ1 ≥ λ2 ≥ . . . ≥ λm > 0 (16)

Setting u = [u1, u2, . . . , um] ∈ Rm×m

Λ = Diag(λ1, λ2, . . . , λm)

Σu = uΛ, uuT = uTu = Im (17)
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Principal patterns and components

The eigenvector ui , 1 ≤ i ≤ m that constitute an orthogonal
basis for Rm are the principal patterns

The principal components are obtained by projecting the
columns of x onto these principal pattern vectors
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Principal component matrix: A ∈ Rm×n

The PC matrix A is given by

A = UT x ∈ Rm×n (18)

That is,

A = [Aij ] =


uT1
uT2
...
uTm

 [x∗1 x∗2 . . . x∗n
]

Aij = uTi x∗j(inner product) (19)
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Orthogonality of the rows of A

AAT = uT xxTu = uTΣu = Λ (20)

Each of the n columns of A give the coordinates of the n
points with respect to new orthonormal coordinate system
defined by the columns of u
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Example: Trajectory matrix

Consider a series {1, 2, 3, 4, 3, 2, 1} with N = 7. Set m = 3
and n = N - m + 1 = 5

The trajectory matrix

x =
1√
5

1 2 3 4 3
2 3 4 3 2
3 4 3 2 1

 ∈ R3×5 (21)
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Example:Σ, u,Λ

Σ = Σ(1) =

7.8 7.6 6.2
7.6 8.4 7.6
6.2 7.6 7.8



Λ = Diag(0.093, 1.600, 22.307) = Diag(λ3, λ2, λ1) (22)

u =

−0.4324 −0.7071 0.5595
0.7912 −0.0000 0.6115
−0.4324 0.7071 0.5595

 = [u3, u2, u1]
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Example:PC matrix A

A =

−0.0658 −0.0987 0.2551 −0.0987 −0.0658
0.6325 0.6325 −0.0000 −0.6325 −0.6325
1.5478 2.3217 2.5952 2.3217 1.5478


Verify AAT = Λ
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Recovery of x

In the light of (17), from (18), it is immediate that

x = uA = uuT x (23)

That is, the original matrix, x can be recovered from A using
the operation uA
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Reconstruction of the signal: x(s) ∈ Rm×n

In the light of ordering of λ’s in (16), define an integer k such
that 1 ≤ k < m and

k∑
i=1

λi ≥ (1− β)
m∑
i=1

λi (24)

Define

Im(m − k) = Diag(0, 0, . . . , 0, 1, 1, . . . , 1) (25)

where 0’s are k in number and 1’s are m-k in number
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Expression for x(s)

Then

x(s) = u[Im − Im(m − k)]uT x (26)

= (
∑k

i=1 uiu
T
i )x

gives the signal component. The noise component is

x(n) = x − x(s) = u[Im(m − k)]uT x (27)
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Example - continued

From (22): λ1 + λ2 + λ3 = 24
λ1
24 = 0.929, λ2

24 = 0.0667, λ3
24 = 0.00388

Verify that λ1 + λ2 = 23.907 > 0.99(λ1 + λ2 + λ3) = 23.897
where β = 0.01

x(s) = (u1u
T
1 + u2u

T
2 )x

x(n) = u3u
T
3 x

(28)
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Example - continued

Verify that (since n = 5)

√
5× (n) =

0.9364 1.9046 2.3467 3.9046 2.9364
2.1164 3.1747 3.5486 3.1747 2.1164
2.9364 3.9046 3.2467 1.9046 0.9364


(29)

is the signal part of the x recovered by the SSA analysis
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Recovery of the signal part of the TS

The signal recovered in (29) does not inherit the Hankel
structure as the original data matrix
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What is SSA?

SSA is a powerful tool for the analysis of time series(TS)
using ideas from

multivariate statistics
geometry
dynamical system
signal processing
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The goal of SSA

To additively decompose a given TS as a sum of
”independent” components that capture the

time varying trend
oscillatory component
noise
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Two stages of SSA

1 Decomposition stage - two steps

1.1 Embedding
1.2 SVD Analysis

2 Reconstruction stage - two steps

2.1 Grouping
2.2 Diagonal averaging
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Comments on the two approaches to SSA

SSA

Module 7.2

Exploits the eigen
decomposition of the
covariance matrix of
x ∈ Rm×n

Developed in Europe and
USA

Exploits the properties of
the principal patterns

Module 7.3

Exploits the SVD of
x ∈ Rm×n

Developed by the
Russian School

Exploits the idea of
grouping based on
the notion of
”separability”
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Notation

Let {yt |1 ≤ t ≤ N} be the given scalar TS, where N is large.

Let 1 < m < N/2 and n = N - m + 1

Define a lagged (Column) vector for 1 ≤ j ≤ n:

x∗j = (yj , yj+1, . . . , yi+m−1)T ∈ Rm (1)
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Step 1.1 Embedding

The given series is split into n lagged column vectors x∗j ,
1 ≤ j ≤ n

Define the trajectory matrix: x ∈ Rm∗n

x = [x∗1, x∗2, . . . , x∗n] ∈ Rm×n (2)
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Example

Let N = 7, m = 3, n =5

y = {y1, y2, y3, y4, y5, y6, y7}

x =

y1 y2 y3 y4 y5
y2 y3 y4 y5 y6
y3 y4 y5 y6 y7

 ∈ R3×5

Verify: xij = yi+j−1 and matrix x inherits the Hankel structure
- elements across the anti-diagonals (i + j = k, a constant)
are the same
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Step 1.2 : SVD of x ∈Rm×n

Since 1 < m < N/2 and n = N - m +1, we have m < n

Let x be full rank matrix: Rank(x) = min{m, n} = m

Then (xxT ) is SPD and

(xxT )u = uΛ (3)

be the eigen decomposition of the smaller Gramian xxT
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SVD of x

u = [u1, u2, u3, . . . , um] ∈ Rm×m

uuT = uTu = Im (4a)

Let Λ = Diag(λ1, λ2, . . . , λm) :

λ1 ≥ λ2 ≥ λm ≥ λm (4b)

Define

vi =
1√
λi
xTui (5)
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SVD of x

v = {v1, v2, v3, . . . , vm} ∈ Rn×m and

vT v = Im (6)

(xT x)v = vΛ (7)

A dual relation:

xTui = viλ
1/2
i and xvi = uiλ

1/2
i

(8)
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SVD of x

From (5):

xTu = vΛ1/2 or xT = vΛ1/2uT (9)

From (8): SVD of x:

x = uΛ1/2vT (10)
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x as a sum of rank-1 matrices

From (10):

x =
m∑
i=1

λiuiv
T
i (11)

(λi , ui , vi ) - i th eigen triple of x, 1 ≤ i ≤ m

These m eigen triples are the basic building blocks for the
reconstruction phase used in identifying the trend, oscillatory
and noise components.
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Energy in x

Recall:
||λiuivTi ||2F = λ2i

||λiuivTi + λjujv
T
j ||2F = λ2i + λ2j

(12)

From (11): The total energy in x:

||x ||2F =
m∑
i=1

λ2i (13)
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Inherent optimality of SVD

Let, for 1 ≤ r ≤ m,

x(r) =
r∑

i=1

λiuiv
T
i ∈ Rm×n (14)

From (12):

||x(r)||2F =
r∑

i=1

λ2i (15)

Hence

||x − x(r)||2 =
m∑

i=r+1

λ2i (16)

In view of the ordering of the λ’s in (4b), it is immediate that
x(r) is the best rank r approximation of x
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Step 2.1: Grouping of indices

Let [m] = {1, 2, 3, . . . ,m}
Let for some 1 ≤ p ≤ m, let sp ⊂ [m]

Grouping: Let {s1, s2, . . . , sp} be partition of [m]

si ∩ sj = ∅,
p⋃

j=1

sj = [m]
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Resulting decomposition of x

Consider the i th group si of |si | indices

Define a matrix x(i) ∈ Rm×n of Rank(x(i)) = |si | as

x(i) = Σj∈siλjujv
T
j (17)

Clearly,

x =

p∑
i=1

x(i) (18)

where p is the number of sets in the partition of [m]
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Step 2.2 - Diagonal averaging

The matrix x(i) in (17) need not be a Hankel matrix

Hankelization of x(i) relates to creating a Hankel matrix, x̄(i)
= Hx(i) for the x(i)

This is the done by replacing each anti-diagonal in x(i) by the
average of the elements in that diagonal in x(i)
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Example of Hankelization

Let

A =

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

 (19)

Z =

z1 z2 z3 z4
z2 z3 z4 z5
z3 z4 z5 z6

 = HA (20)
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Example (continued)

Then
z1 = a11

z2 =
1

2
(a12 + a21)

z3 =
1

3
(a13 + a22 + a31)

z4 =
1

3
(a14 + a23 + a32)

z5 =
1

2
(a24 + a42)

z6 = a34

(21)
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Algorithm for Hankelization

Let A = [aij ] ∈ Rm×n matrix

Let B = HA = [Bij ] ∈ Rm×n

Bij =


1

s−1
∑s−1

p=1 ap,s−p for 2 ≤ s ≤ m − 1
1
m

∑m
p=1 ap,s−p for m ≤ s ≤ n + 1
1

m+n−s+1

∑L
p=s−n ap,s−p for n + 2 ≤ s ≤ n + m

(22)
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Hankelize the sum in (18)

Recall that

H(A+B) = H(A) + H(B)
H(A) = A if A is a Hankel matrix.

Operating both sides of (18) by H:

x =

p∑
i=1

H(x(i)) =

p∑
i=1

x̄(i) (23)
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Decomposition of yt

Recall: Unique relation between time series and Hankel
trajectory matrix

Let {yt |1 ≤ t ≤ N} be the TS for x and {ȳt(i)|1 ≤ t ≤ N}
be the TS for (i)

Then (23) becomes:

yt =

p∑
i=1

ȳt(i) for each 1 ≤ t ≤ N (24)
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Comments: choice of L

The results of the first stage of decomposition critically
depends on the window length m

If we already know that the given TS has periodic
components with period T - say using spectral analysis, then
L is proportional to this period.

In any case L must be large but less than N/2, half the length
of the series

S. Lakshmivarahan Module 7.3 26 / 37



Comments: challenge of grouping

Of the four steps involved, embedding, SVD and
Hankelization are quite algorithmic and can be easily
implemented

Grouping is the most demanding part of this approach to SSA

Algorithm for optimal grouping is still evasive, extra /
supplementary information about the series could be used as
a guide to grouping
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Guide to grouping - Scree plot

Identifying breaks in the scree plot - plot of the eigenvalues
Vs its rank, could help identify signals from noise

Presence of white noise corresponds to a constant lower
ceiling in the scree plot

It is known that a harmonic component produces a pair of
very close singular values
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Guide to grouping - Periodogram

Compute and plot the periodogram for the TS and identify
the frequency with spikes in the spectrum

We can then search for the eigen triple whose frequencies
coincide with those identified by the spikes
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Role of separability in grouping

To partially automate the grouping operation, a notion of
”separability” based on a ”weighted correlation” is introduced

Two series are separated from each other if their weighted
correlation is low
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Choice of Weights

Let ft and gt be the two time series with 1 ≤ t ≤ N

Let 1 ≤ m ≤ N/2 and n = N - m + 1

Let
wk = min{k ,m,N − k + 1} for 1 ≤ k ≤ N (25)
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Example

Let N = 6, m = 3, n =4

Then: wk = min{k, 3, 7-k}
Clearly,
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Weighted inner product of two TS

Let {ft} and {gt} be the two series for 1 ≤ t ≤ N

The weighted inner product between {ft} and {gt} is

< f , g >w=
N∑

k=1

wk fkgk (26)
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Norm of a given TS: ||f ||w

||f ||2w =< f , f >w=
N∑

k=1

wk f
2
k (27)
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Weighted correlation between ft and gt

ρw (f , g) =
< f , g >w

||f ||w ||g ||w
(28)

is the weighted correlation

The idea is: if ρw (f , g) is small, then the series {ft} and {gt}
are almost w-orthogonal and do not share common
information
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An application

Given the m-eigen triples (λ
1/2
i , ui , vi ) first compute

x(i) = λ
1/2
i uiv

T
i 1 ≤ i ≤ m (29)

Let x̄(i) be the Hankelized x(i) and {ȳt(i)|1 ≤ t ≤ N} be the
corresponding TS
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Compute their W-Correlations

Given x̄t(i) for 1 ≤ i ≤ m, compute

R = [Rij ] ∈ Rm×m

where
Rij = ρw (x̄t(i), x̄t(j)) (30)

By examining the off-diagonal entries of this symmetric
matrix, we may isolate the correlated pairs from others which
in turn provide useful information for grouping
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PCA

Given a random field x ∈ Rm(indexed by points in a spatial
domain S ⊆ Rk , k = 1, 2, 3), the goal of PCA is to
decompose x as a linear combination of intrinsic spatial
patterns which are related to the eigenvectors of cov(x) where
the variance of the random coefficients in the linear
combination are directly related to the corresponding
eigenvalues of cov(x)

If the eigenvalues of cov(x) are distinct and decreasing, this
additive decomposition is often used as basis for ”removing
the chaff(noise) from the corn(signal)”
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CCA

Given two random fields x1 ∈ Rm1 and x2 ∈ Rm2(defined over
two spatial domains S1 and S2) the goal of CCA is to express
each field as a linear combination of its own spatial patterns
in such a way that the corresponding spatial patterns exhibit
maximum correlation

An example : x1 average SST over equatorial pacific during a
month and x2 could be the average rain fall across the USA
in that same month
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Second-order properties of two random fields

Let x1 ∈ Rm1 and x2 ∈ Rm2 be two random fields of interest

E (x) = µ1 and E (y) = µ2 (1)

cov(x) = E [(x − µ1)(x − µ1)T ] = Σ11 ∈ Rm1×m1 (2)

cov(y) = E [(y − µ2)(y − µ2)T ] = Σ22 ∈ Rm2×m2 (3)

Assume that Σ11 and Σ22 are SPD
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Covariance between x1 and x2

cov(x1, x2) = E [(x1 − µ1)(x2 − µ2)T ]

= Σ12 ∈ Rm1×m2 (4)

cov(x2, x1) = E [(x2 − µ2)(x1 − µ1)T ]

= Σ21 = ΣT
12 ∈ Rm2×m1 (5)
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Normalize x1 and x2

Let D1 ∈ Rm1×m2 = Diagonal matrix with the diagonal
elements of Σ11

D2 ∈ Rm1×m2 = Diagonal matrix with the diagonal
elements of Σ22

Normalize x1 and x2:

Then
x̂1 = D

−1/2
1 (x1 − µ1)

x̂2 = D
−1/2
2 (x2 − µ2)

(6)

are the centered and normalized versions of x1 and x2
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Correlation between x1 and x2

cor(x1, x2) = cov(x̂1, x̂2) = E [x̂1(x̂2)T ]

= D
−1/2
1 Σ12D

−1/2
2 ∈ Rm1×m2 (7)
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Spatial patterns for random fields x1 and x2

Let
F = [f1, f2, . . . , fm1 ] ∈ Rm1×m1 (8)

be a matrix whose linearly independent column vectors span
Rm1 and constitute m1 distinct spatial patterns for x1

Similarly, let

G = [g1, g2, . . . , gm2 ] ∈ Rm2×m2 (9)

be that for x2
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Expansion of the random fields using spatial patterns

By resolving x1 along each of the spatial patterns fi , it follows
that

x1 =

m1∑
i=1

(xT1 fi )fi =

m1∑
i=1

(αi fi ) (10)

where the coefficients αi = (xT1 fi ) of the linear combination
in (10) are random variables since x1 is random
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Expansion - continued

Similarly, resolving x2 along each of the spatial patterns gj , it
follows that

x2 =

m2∑
j=1

(xT2 gj)gj =

m2∑
j=1

(βjgj) (11)

Here again, the coefficients βj = (xT2 gj) inherit their
randomness from that of x2
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Statement of the problem

The goal is to find the spatial patterns {fi} and {gj} such
that

cor(α1, β1) ≥ cor(α2, β2) ≥ · · · ≥ cor(αk , βk) > 0 (12)

and
cor(αi , βi ) is the maximum for (fi , gi ) (13)

for each i = 1, 2, . . . k ≤ min{m1,m2}
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Expression for typical correlation

Let f ∈ Rm1 and g ∈ Rm2 be two typical spatial patterns for
x1 and x2

Define:

α = xT1 f and β = xT2 g (14)

Then

ρ = cor(α, β) =
cov(α, β)

[var(α)var(β)]1/2
(15)
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Expression for cov(α, β)

cov(α, β) = E [(x1 − µ1)T f (x2 − µ2)Tg ]

= f T cov(x1, x2)g

= f TΣ12g = f TΣT
21g

(16)
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Expression for var(α) and var(β)

Var(α) = E [(x1 − µ)T f (x1 − µ1)T f ]

= f TE [(x1 − µ)(x1 − µ1)T ]f

= f TΣ11f > 0 (17)

Similarly:

Var(β) = gTΣ22g > 0 (18)
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Typical correlation

Substituting (16), (17) and (18) in (15):

ρ = cor(α, β) =
f TΣ12g

(f TΣ11f )1/2(gTΣ22g)1/2
(19)

Goal is to find the pattern pair (f,g) that maximizes the right
hand side of (19)
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Scale invariance of ρ

Let a,b be two positive real constants

It can be verified

ρ = cov(α, β) = cov(aα, bβ) (20)

That is, ρ is invariant under the scaling of the spatial patterns
f and g
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Normalized spatial patterns

With out loss of generality, assume that the patterns f and g
are normalized:

f TΣ11f = 1 and gTΣ22g = 1 (21)

Define

f̄ = Σ
1/2
11 f and ḡ = Σ

1/2
22 g (22)

Then

f̄ T f̄ = 1 = ḡT ḡ (23)
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New expression for ρ

Substituting (21), (22) and (23) in (19), we get a bilinear
form ρ given by:

ρ = f̄ T (Σ
−1/2
11 Σ12Σ

−1/2
22 )ḡ

= f̄ TAḡ (24)

where

A = Σ
−1/2
11 Σ12Σ

−1/2
22 ∈ Rm1×m2 (25)

The problem is to find f̄ ∈ Rm1 and ḡ ∈ Rm2 that maximizes
ρ in (24) under the constraints (23)
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Lagrangian approach

Consider the lagragian

L(f̄ , ḡ , a, b) = f̄ TAḡ + a(1− f̄ T f ) + b(1− ḡTg) (26)

where a and b are the (scalar) unknown Lagrangian
multipliers
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Conditions for the maximum

5f̄ L = Aḡ − 2af̄ = 0 (27)

5ḡL = AT f̄ − 2bḡ = 0 (28)

5aL = 1− f̄ T f̄ = 0 (29)

5bL = 1− ḡT ḡ = 0 (30)
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Optimal solution

Conditions (29) and (30) follows from (23)

Optimal (f̄ , ḡ) are obtained as the solution of (27) and (28)
written as

Aḡ = 2af̄ (31)

AT f̄ = 2bḡ (32)
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A related eigenvalue problem

Substituting (32) in (31) and vice versa:

AAT f̄ = 4abf̄ (33)

ATAḡ = 4abḡ (34)

That is, setting λ = 4ab, it follows that (λ, f̄ ) is an eigen pair
of AAT and (λ, ḡ) is an eigen pair of ATA
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A first look at the solution to the problem

Indeed, the pair (f̄ , ḡ) of spatial patterns that maximizes ρ in
(24) are given by the eigenvectors of the two Grammian
matrices AAT and ATA respectively where A ∈ Rm1×m2 is the
matrix of the bilinear form in (25)

Also, notice that the eigenvalues λ are related to the product
of the Lagrangian multipliers a and b
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Properties of ATA and AAT

For concreteness, let m2 < m1 and A be of full rank

Rank(A) = Rank(AT ) = min{m1,m2} = m2

Rank(AAT ) = Rank(ATA) = m2

Thus, smaller Gramian ATA is of full rank, and SPD but
longer Gramian AAT is rank deficient and symmetric positive
semi-definite
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Eigen structure of ATA

Let (λi , ḡi ), 1 ≤ i ≤ m2 be the eigen pairs of ATA. That is,
(ATA)ḡi = ḡiλi , ḡi ∈ Rm2 where

λ1 > λ2 > λ3 · · · > λm2 > 0 (35)

Let
Ḡ = [ḡ1, ḡ2, . . . , ¯gm2 ] ∈ Rm2×m2

Λ = Diag(λ1, λ2, λ3 . . . , λm2)
(36)

Then :
(ATA)Ḡ = ḠΛ

ḠT Ḡ = Ḡ ḠT = Im2

(37)
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Eigen structure of AAT

Define

f̄i =
1√
λi
Aḡi ∈ Rm1 , 1 ≤ i ≤ m2 (38)

Verify:

(AAT )f̄i = λi f̄i (39)

Set: F̄ = [f̄1, f̄2, . . . , ¯fm2 ] ∈ Rm1×m2

Then
(AAT )F̄ = F̄Λ

F̄T F̄ = Im2

(40)
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SVD of A

Rewriting (38)

Aḡi = f̄i
√
λi , 1 ≤ i ≤ m2

That is,

AḠ = F̄Λ1/2 or A = F̄Λ1/2ḠT (41)

is called the singular value decomposition of A

λi ’s are the eigenvalues of ATA and AAT and
√
λi are the

singular values of A

S.Lakshmivarahan Module 17.1 27 / 32



Back to correlation ρ

From (24): For 1 ≤ i ≤ m2,

ρi = f̄i
T
Aḡi (42)

Substitute for A using (41):

ρi = f̄i
T
F̄ΛḠTgi (43)
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Simplification of (43)

f̄i
T
F = [f̄i

T
f̄1, f̄i

T
f̄2, . . . , f̄i

T
f̄i , . . . , f̄i

T ¯fm2 ]

= (0, 0, . . . , 1, . . . , 0) = eTi ∈ Rm2 (44)

the i th unit vector in Rm2

ḠTgi =



ḡ1
Tgi

ḡ2
Tgi
...

ḡi
Tgi
...

¯gm2
Tgi


=



0
0
...
1
...
0


= ei (45)
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Maximum value of ρi along (f̄i , ḡi)

Substituting (44) and (45) in (43):

ρi = eTi Λ1/2ei =
√
λi (46)

the i th singular value of A

Since λi > 0 and are ordered as in (35),it follows that ρi
attains its i th maximum value along the spatial pattern pair
(f̄i , ḡi )
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Singular value and Lagrangian multipliers

From (33)-(34):

λ = 4ab or
√
λ = 2

√
ab

that is singular values are proportional to the square root of
the product of the two Lagrangian multipliers

When m1 = m2 from (31)-(32), we get

0 = f̄ TAḡ − ḡT Āf̄ = 2f̄ T ḡ(a− b) (47)

it follows that a = b since f̄ T ḡ 6= 0
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