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A basic set up

@ Let x € R™ be a random vector in L,

o Without loss of generality: Assume x is centered
e E(x) =0 and Cov(x) =X € R™™

@ Assume that X is SPD
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Eigen decomposition of

e Let (\;, v;) be an eigenpair of

@ That is,
ZV,' = V,')\,', 1 < i <m (1)
e Define v =[vi,va,...,vpn] € R™™ an orthogonal matrix of
eigenvectors of ¥.
viv=w' = Im
@ Define
A= Diag(/\l,)\g,...,)\m) € Rm*m (2)
@ Let
A > > . A >0 (3)
@ Then
Yv=vAX=vAv  vIvT =A (4)

S.Lakshmivarahan Module 6.1 3/36



Eigenvalue and variance

@ Define
Var(x) = > Var(xi) =Y E(x7) = E(x"x)
i=1 i

o But E(xTx) = E[tr(xxT)]
= tr[E(xxT)]
= tr(X) = tr(vAvT)
= tr( vIvI)(. tr(AB) = tr(BA))
=tr(X) =X\
@ Sum of the variance of the components of x = sum of the
eigenvalues of the covariance matrix of x
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Statement of the problem

@ Find a set of m deterministic, orthonormal vectors
{£1,£2,&3,...,&m} where each & € R™ and a set of m

uncorrelated random coefficients {a1, an, a3, ..., amn} such
that
(1) X:algl +042§2 +~~+am§m (7)
and
(2) var(ei&§) =i, 1 <i<m (8)

@ Such a set of orthonormal vectors called the principal patterns
and the set of associated random coefficients are called the
principal components.
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Rayleigh Quotient and its properties

To this end, let A € R™*™ be an SPD and n € R™
e Given A, define a functional, ra(n) : R™ — R as

-
n"An
r = (9)
A(n) 777'77
o Let (i,&) be an eigenpair of A: AL = pé
@ Then -
AL
@ Since the eigenvectors are normalized: ¢7¢ =1,
ra(§) = ETAE = (11)
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Rayleigh Quotient for A = ¥

@ Recall that v; is a normalized eigenvector corresponding to
the eigenvalue \;, 1 <7 < m of the covariance matrix ¥ of
the random vector, x.

e From (11):
rz(v,-) = V,-TZV,' = )\,’ (12)

@ In view of the ordering of the eigenvalues in (3):

rz(vl) > rz(v2) > ... > r}:(Vm) (13)
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A linear functional of x

o Consider the eigenpair (), v;) of ¥:
Tvi=viA,v vi=1 for 1<i<m

@ Define a new random variable

o = v x (14)

1

which is a linear functional of x

@ Then,
E(aj) = E(vx)=vTE(x) =0 (15)
var(a;) = E(af) = E[(v x)(v"x)] = v E(xT )i
= v,-TZv,- =\ (16)
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Properties of the random vector «;v;

°
E(ajvi) = E[(v,-TX)v,-] = E[(v,-TX)]v,- =0 (17)

o Let the vector v; = (hy, ha, ..., hy) T with v,-Tv,- =1

@ Then,
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Correlation between «; and ¢;

cov(aj, o) = E(ajaj) = E[(v,-Tx)vJ-TX] = v  E(xx )y,

= v,-TZvJ- =0

(19)

since v ¥v = A, a diagonal matrix

@ That is, a; and «; are uncorrelated for / # j
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Solution to the problem stated above

@ By setting & = v; in (7), we first identify the required set of
m orthogonal eigenvectors of ¥ that constitute a basis for R™

o By setting a; = (v// x) in (7) we identify the required set of
uncorrelated random coefficient such that var(v." x) = A;

@ Indeed, the required expansion of x is given by

x = (v x)v1 + (Vg x)vo + - + (v, X)vm (20)
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Projection matrix along an eigenvector of X

@ Recall that the orthogonal projection matrix, P, € R™*™
along the direction h € R™ is given by

Py = h(h"h)~thT (21)
@ Setting h = v a normalized eigenvector of ¥,

P, =v(vTv) WvT =wT e Rmxm (22)
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Projection of x along the eigenvector of v

Pox=(wx=v(vx)=(v"x)v (23)

@ Consequently, each of the m terms in the summand on the
right hand side of (20) is a vector resulting from the
orthogonal projections of x along the m orthogonal basis of
R™ which are eigenvectors of ¥
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Equivalent representations of points in R™

@ The random vector X € R™ denotes a point R™ which in the
standard orthogonal basis is given by

m
X = Z Xie; (24)
i=1

where ej € R™ in the it unit vector

@ In the new orthonormal basis of principle patterns defined by
the eigenvectors of cov(x) = X, the point x is given by

X = Za;v; and «; = XTV,' (25)
i=1

@ Thus, the same point in R™ admits two labels x and
o = (a1,0,...,a,)", the Principal components
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Principal component transform

L

(%] %)
a=|"|=|7|x=vx (26)

am| T

That is, the principal component « is obtained by a linear

transform vT of x as @ = v ' x

o Conversely,
X =va (27)

e While var(x) = var(«), the principal component has the
additional property that

var(aq) > var(az) > ...var(am) >0 (28)
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Covariance of x and «

@ Components of x are correlated but those of a are
uncorrelated

e cov(x,a) = E(xa™) — E(x)E(a’)
= E(xa™) (. E(x)=0)
=E(xxTv)=%v=vivly

=vX (29)
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Correlation between x; and «;

° 52 = orlxi: ) = [t iy
e From (29):
cov(xi, aj) = (VE)jj = Vi (30)
e var(wj) = \j from (16)
@ Hence,

Q= VY (31)

b= [var(x;)]}/2
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An interpretation of

o Verify

N v/\vT);,- B
;QU var(x, Z AY var(x;) ! (32)

j 1

@ Hence, Q% denotes the fraction of the variance of x; explained
by the principal component «;
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Example 1

o Let m=2 and x ~ N(0,X) where

_|1»
Z—[p 1] and p >0

e var(x1) =1 = var(xp), cov(xi, x2) = p
o Verify that
)\1:1—|—pand )\2:1—p
are the eigenvalues of
@ Verify that
_ 1 1 d _ 1 1
R N Bl R CVo |
are the corresponding eigenvectors of X
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Example 1(Continued)

@ The principal component transform matrix, using(26) is given

by
LT v !
v | V2|1 -1

@ The principal components are
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Variance of principal components

e var(ag) = var(\%(xl +x2)) = 3E[(x1 + x2)?]
= %[var(xl) + var(x2) + 2cov(x1, x2)]
=14+p=X\

o var(a) = vj Tvg = % [1 1] [[1) /1)] [ﬂ =1+p

@ Verify
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A comparison of variances of components of x and «

@ x is such that var(x;) = 1 = var(x2)

@ « is such that var(ag) =1+ p,var(ax) =1—p
var(ai) > var(az) , since p >0
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Covariance between x and «

e From (29)

cov(x,a) = vk
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Correlations €2;; between x; and «;

e From (31), since var(x1) = var( ) 1
Q1 = v = (2 p) /2
Q2 = Vovin( 152 p)
Qo1 = Vw1 = (152)1/2
Q22—\ﬁV22(f)

OQH—i—le—%[l—l—p—l—l—p]—l

0+, =3[l +p+1-p]=1
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Example 2

Let x € R™ and x ~ N(u, X), % - SPD
Let ¥ = vAv' be the eigen decomposition
Principal components, a = v (x — p)
E(ai) =0,var(aj) =X, 1 <i<m
cov(aj, aj) =0 for i # j

var(a;) > var(ag) > -+ > var(am) >0
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Example 2(continued)

e var(x) = tr(X) =Y 1", var(«o;)
o [, var(ej) =

[17 A = det(¥)

S.Lakshmivarahan

o
Module 6.1

Do
26 /36



GOAL OF SDA

@ Recall that the ultimate goal of statistical any data analysis is
to explain the observed spread as measured by the variance in
the data

@ The total variance in the data can be modeled as the sum of
the natural/inherent variation in the signal component and
that of the additive noise that corrupts the signal
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A look back

@ The above analysis rests on two basic observations

o (a) The total variance in the given random vector x € R™ is
equal to the sum of the non-negative eigenvalues of the
covariance matrix, ¥ and x

o (b) The variance of the projection of x along an eigenvector of
Y is qual to the associated eigenvalue

e (c) The resulting additive decomposition of x as a linear
combination of uncorrelated components in (20) is critical to
the use of principal component analysis
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A natural partitioning of variance

@ Under the assumption that the eigenvalues of ¥ are distinct,
by ordering them in the decreasing order, it is immediate that
the i component (x"v;) of x inherits the fraction
(Ai/ >°71 i) of the total variance in x

@ Given any £ small(such as 0.01,0.05,etc..,) we can find an
integer k,(1 < k < m) such that

k
L1 (33)
i=1"\
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Reconstruction

@ That is, the first k eigen direction corresponding the k largest
eigenvalues together inherit atleast (1 — /3) times the total
variance

@ Using these k components, we can reconstruct the signal
component(see Exercise 1)

k
Z x'vi)v; (34)
@ The rest given by
X—X= Z (xTv;)v; (35)

is often treated as the noise component in x
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Special case

@ In the event that the components of x are uncorrelated, then
> would be a diagonal matrix consisting of the eigenvalues
which are the variance associated with the components

@ In this case .
X = Z Ai€j (36)
i=1

where ej € R™ is the standard it" unit vector with 1 in the it
location and the zero elsewhere

@ Consequently, unless the condition number /’\\—; is large or the

ratio % is close to 1, we may not get a k-mode
approximation to x for small values of k
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Quality of signal approximation

@ The quality of the approximation in (34) can be measured by
quantifying the variance of the difference (x — X) in (35)

o Recall from (14)-(16) that E(x"v;) = 0 and var(x"v) = \;
@ Hence,
var(x — 8) = E[(x — 8) T (x = %) (37)

S.Lakshmivarahan Module 6.1 32/36



Quality of signal(continued)

@ Substituting (35) in (37) and simplifying:

var(x — %) = E[(Z7 1 (xTvi)vi) (S 2 (xTvj)v) ]
= E[X T (<Tvi)vi)?l [ vily]

= Z E(XTV,')2: Z Aj (38)
i—k+1 i=k+1
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Inherent Optimality

@ From the ordering of A;'s in (3), it is immediate that the sum
on the right hand side of (38) is the sum of the least (m-k)
values of A and hence is a minimum for every k
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Exercises

o Consider the expression in (34):

=T+ (xTw)va 4 -+ (xTvi)vi (39)
using (xTv;)vi = v;(x"v;) = vi(v; x) = (v;v. )x rewrite % in
(39) as

f= (i) + (v2v)) + -+ (v (40)
= v ... v | x
A
= V[l - kVTx

where V € R™™ and k = Diag(ki1, k22, - . ., Kmm) with
k,‘,‘ZOfOI’].SI'Sk
=1lfork+1<1<m
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PCA an optimal process

@ Given a random vector x € R™, find the principal patterns an
components as an optimization process

@ There are two key steps in this development

o First, given a k-dimensional subspace s, of R™ for
1 < k < m, find the best approximation X(k) of x where
X(k) € sk

@ Second, find the specific subspace sy that inherits the
maximum variance of x
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Specification of s

o Let s, be spanned by the orthonormal columns of H € R™*

given by
e From
H = [h1, ha, ..., hg] (1)
hThj =0 fori#j
=1fori=j
o Verify
HTH = I (2)

HHT € R™ — symmetric
(HHT)? = HHT — idempotent
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Best approximation X(k)

o Let
R(k) = Ha,a € RK
e By orthogonal projection theorem: using(2)
a=(HTH) *H x = HTx

@ Thatis

ai=hlx for 1<i<k
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Error in the projection

e=x—-%h) =x—Ha=x—-HH x=(l,,— HH)x (7)

S.Lakshmivarahan

o
Module 6.2

Do
5/21



Variance of the error

° var(e) = E[e"¢]
= E[xT(I = HHT)T (I — HHT)x]
= E[xT(I — HHT)?x]
= E[xT(I — HHT)x]

= E(xTx) — E[(xTH)(HTx)] (8)
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Variance of the error

E(xTx) = var(x) = tr(X) 9)
° E[(x"H)(H"x)] = E[aTa] (using(5))
k
=Y E(a) (10)
i=1
° E(a?) = E[h] xh] x] = E[h] xxT h]]
= hTE(xxT)h;
= hlTh; (11)
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Variance of the error

@ Substituting (9),(10) and (11) in (8):

var( Z h! T h; (12)

@ Since tr(X) is fixed, var(e) is a minimum when the second
term on the right hand side of (12) that represents the total
variance of the k principal component a;,1 < i<k is a
maximum
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Optimization problem

o Let .
Q=) hlzh
i=1
@ Goal is to maximize (13) subject to two conditions on
h,‘, 1 S i S k:

hThi=1 and hlh;=0 for i#j
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Lagrangian, L

@ Build the Lagrangian

L(H, 11,n) ZhTZh +Zu,1—h7h + mihlh

i#j
(15)
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Necessary condition(NC) for a _

Vnl=0

= 2% h; — 2pu;hi + Xjzimijh;

(16)
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NC for maximum

@ Multiplying both sides on the left by h,-T and exploiting the
orthonormality of h;'s:
0= 2h,-TZh,' — 2,LL,'hI-Th,' + Zﬁg,‘nijh,‘—rhj

= 2[hT Thi — pi] (17)

@ Hence
hIYhi=p;i or Xhi=ph (18)
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Relation to eigen structure of X

o From (18): (ui, hj) are the eigen pair of X

@ Since we are interested in the maximum of the sum

k k
S OhIThi =" (19)
i=1 i=1

it follows that (\;, h;) are the eigen pairs of X corresponding
to the k largest eigenvalues of ¥ where we assume that

Bl > pp > > > i >0 (20)
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Langrangian multipliers 7;

e Multiplying both sides of (16) on the left by h,, p # i

0= 2h) Shi — 2uih] hi + > mijh] bj (21)
J#i
e Since H'XH = Diag (1, pt2, - - - , pix), hpTZh,- =0forp+#i
@ Since p # i, the only term that survives for j = p # i which is
Nip
@ Hence
Nip =0 (22)
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Langrangian multipliers 7;

@ By running p over the set 1,2,..., k and p # i, for (k-1)
values of p = i, we get

Nip = 0 (23)

@ By repeating this argument for each i, it follows that all n;
for i #£ j are all zeros
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Summary

@ By choosing the k-orthonormal columns of H to be the
k-orthonormal eigenvectors corresponding to the k largest
eigenvalues of ¥, we maximize the sum

k k
S ORIEhi =D (24)
i=1 i=1
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PC expansion for x

@ Recall v € R™™ and A = Diag(A\1,...,Am) :
viTv=A o T =vAv'
@ Setting k=m,H = v,
i = A
e From (4):

(m)=va and a=v'x

x>

X =

which is the same as in Module 6.1
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Example

@ An example may help illustrate the derivation of the necessary
condition for maximum in (16)

@ Setk=3
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Three equations for i = 1,2,3

e From (16) we get

0 =2%h1 — 2u1h1 + nioho + mszhs (28)
0 =2%hy — 2uohp + 11 + 13hs (29)
0 = 2Y h3 — 2u3h3 + m31h1 + m32ho (30)
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Conditions from (28)

Multiplying both sides of (28) in turn on the left by h{, hJ
and h3T, using orthonormality we get

0= 2h1TZh1 — 2/11/7{/11 — Zhl = ,ulhl
0 = 2h] Thy — 2u1h] hy + ni2h] hy + mi3h] hs we get 712 = 0
0= 2/73?—2/73 — 2u1h;—h1 + T]12h;rh1 + 7713/73?—/73 we get 13 =0
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Conditions from (29)

e Multiplying both sides of (29) in turn on the left by h{, hJ
and h{, we get

Yhy = pohp,m21 = 0,123 =0
e Similar action on (30) gives

Y h3 = pzhz,m31 = 0,132 =0
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Why data matrix ?

@ Analysis thus far assumed the knowledge of the properties of a
random vector x € R™

@ In real world applications, we do not know these second-order
properties

@ Have access only to an ensemble of realization of x obtained
through direct measurements

o First step: organize this ensemble data in the form of a data
matrix where each column is a realization of x
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Data matrix : x € R™*"

@ Each column of x refer to an object

@ Each row of x refer to an attribute of the object
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Data matrix

o The jt column, x.; refer to the profile of the j object

e The it" row, x;, refer to the values of the it attribute of all
the objects

o x; is the i*h attribute of the j™ object
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Example 1 - Classification of Students

@ Objects refer to n students in a class

@ The m attributes refer to the grades in a set of m-courses
taken by each of the n student

e x; is the grade of the jt student in the " course
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Example 2 - Classification of Humans

@ Objects refer to a set of n humans

@ Attributes may refer to height, color of skin, weight, length of
the torso, education, head size, color of the eye, blood group
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Example 3 - Classification of Models

@ The set of n objects may denote a set of initial condition for a
class of models

@ The attribute may denote the solution of the model on a 2-D
grid with m = mym,, points
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Example 4 - Meteorology

@ In weather analysis/prediction, it is of interest to understand
the variation of the (geopotential) height of the atmosphere at
different pressure levels, say 900, 700, 500, 300, 100 mbar

1005
300 4
500 3
700 2
900 1

m = 5 levels

e Geopotential, ¢ is defined as the work required to raise unit
mass from the surface of the earth to height h:

¢(h) = [, gdh
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Example 4 - Continued

@ Baloons with instruments for measuring pressure, height,
temperature, humidity etc are hoisted from a given location

@ Once a day, for 120 days with 15 days before the start and 15
days after the and of a given season - say winter in northern
hemisphere for 10 successive years

@ Here m=5,n=120 x 10 = 1,200 days
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Example 5 - Climate Analysis

@ Spatio-temporal distribution of sea surface temperature(SST)
across the globe, distribution of the concentration of green
house gases etc, is of great interest in climate studies

@ For simplicity, consider a 2-D version of this problem

@ Pick a domain of interest and embed an uniform 2-D grid with
my number of points along the east-west and m, number of
points, along the north-south direction for a total of
m = m,m,, points

@ Here x is a random vector of size m
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2-D grid numbering

o Consider a grid with m, =4 and m, =5 for a total 20 points

@ Points are labeled with two indices (p,q) where p refers to the

level and q refers to the node at that level

@ 4,3 is the third node at the fourth level

51 52 53 54
4,1 4,2 43 4,4
31 3,2 3,3 3.4
2,1 2,2 2,3 2,4
11 1,2 13 1,4
my =4
S.Lakshmivarahan Module 6.3

11/19



Row / Column major order

@ From computing perspective, it is useful to number the nodes
using a simple index so that the data across the grid can be
stored in an 1-D array

e Two possibilities: map (p,q) to a single integer
Row major order : k = (p—1)myx + g
Column major order : s = (q —1)m, + p
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Re-numbered 2-D grid

17 18 19 20 5 10 15 20
13 |14 |15 |16 4 9 14 |19
9 10 |11 |12 3 8 13 |18
5 6 7 8 2 7 12 |17
1 2 3 4 1 6 11 |16
@ Row-major order e Column-major order
o (p.q)=(43) e k=15 o (pq)=(43)=s=14
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Generation of data matrix

Let my = 31 and m, = 16 with m = 496

o Let a3 € N(0,0%), a2 € N(0,03), e(x,y) € N(0,03)
@ Define, for 1 <t < 100
g1(x,y, ) = au(t)cos(5)cos( Ty ) (1)
X 7r
ga(x.y.t) = ax(t)cos(Tg)cos() (2)

o Let

g(XJyvt):gl(Xayvt)+g2(X7y7t)+E(X7y7t) (3)
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First column of the Data matrix (without noise e(x, y, t))

o Sett = 1, generate a1(1) and ax(1) by setting 02 = 0.6 and
2 _

05=03

@ For 0 < x <30and 0 <y <15, compute
gl(X7y7 1)7g2(X7Y7 1) and g(X7ya 1) = gl(Xv}/7 1) + gZ(Xayv 1)
to obtain a column vector using column major order, for
example Z,; € R*9 which is the first column of the data
matrix, Z € R496xn
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Entire matrix Z € R4%6x100

@ Fort =n=2,3,...,100, repeat the above process by
generating a new pair, (a1(t), a2(t)) of random numbers and
compute the t" column of Z for 2 < n < 100

@ Clearly, each row corresponds to a grid point and each column
to an Instant In time

@ The jt column gives the profile of the variable of interest
across the grid at time j

o The it" row gives the distribution of the variable at a grid

point across time.
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Noisy data matrix Z € R*96x100

@ For each time index t,1 < t = n < 100, generate the spatial
noise vector 7)(t) € R™, m = 496 where the components are
uncorrelated gaussian noise with mean zero and variance
U% =0.2

@ Repeating this process N = 100 times, create a matrix
ne Rmxn

@ Create a noisy data matrix :
Z=7Z+n (4)

where t was obtained earlier
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Noiseless and noisy data matrices

o The matrix Z € R*96x100 is 3 data matrix that represent a
100 member ensemble of realization of the 2-D field variable
g(x,y,t) defined in (3) by setting e(x,y,t) =0

@ The matrix Z € R*96%100 is 5 data matrix that represents a
100 member ensemble of the noisy realization of the field
variable g(x,y,t) in (3) with the noise matrix 7 added to Z,
thatis, Z=2+n

@ These two matrices will be used to test the methodology
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Population vs. sample based PCA

PCA
e Population PCA @ Sample based PCA
@ x € R™, random vector @ /i, % - not known
@ 41, X - known o Work with data
27 AvT matrix, x € RM*n
@ Y =vAv A
Estimate (i, >
° x — 2711(XTV,')V/ o Estimate /i, )
N . o PCA based on fi, ¥
@ Reconstructed x = X =

called EoF based
analysis

Zf‘(:l(XTVi)Vi
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Data matrix

@ Assume that the raw data matrix, X € R™*" is given

o First step towards EoF analysis is to extract the underlying
covariance/correlation structure of data

@ This calls for transforming the data:

e centering
e normalizing, if the units across the rows of z are widely
different
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Compute row mean

o Let J,=(1,1,...,1)7 € R" be a column vector of all 1's.
J4 = (1a 1a 1a 1)T
o Let M = (My, Mo,...,M,)7 be the row mean vector where
1 < 1
Mi = — > xij= (X ) (1)
j=1
@ Then 1
M = = XJy (2)
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Centering the data

o Let
X = [Xj] € R™"

be the centered data matrix where
Xj=Xj—M;, 1<i<m, 1<j<n

@ Then
X=[X-MJ"]

where MJ, T is the m x n outer product matrix
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Normalized data

o Let 52 be the sample variance of the i row of X. Then

n

- M2 =S (%R (s)

j=1

o The normalized data matrix, X is given by

, . X
X = [XU] and X,'j = ?J
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Normalized data matrix

@ Define a diagonal matrix
D = diag(st, 3, -+ 5p) (8)

consisting of m sample variances across the diagonal of D

@ Then
X =D7Y2X 9)

where
DY? = Diag(s1, sz, ..., 5m) (10)
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Covariance matrix, C € R™*m

@ Let C = cov(x) be the sample covariance of the data in the

matrix X
@ That is,
1 oy v .
Cij:n_lkz_:lx,'k)g'kforl#j
N (11)
1 ~ 2 .
:n_lz(X,-k)zs,?for/:J
k=1
@ Then 1
= X(X)T 12
€= —X(X) (12
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Correlation matrix, R € R™*™

@ Let R = cov(X) be the sample correlation matrix

@ That is,
I o o
Rj=— > (XuXi) for i
. nk:l (13)
= ()A(,-k)zzl for i=j
k=1
@ Then
IS 1 o\ T -1 2)?()?)7— —1/2
cor(z) = cov(2) = ——X(X)T = / mD /
— p-12cp-1/2
(14)
o Clearly:
Ry <1 (15)
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A prelude to SVD analysis

@ Module 1.2 contains the theoretical basis for SVD analysis of
a general matrix, H € R™*"

@ Recall that if we multiply H by a constant a > 0, the
non-zero eigenvalues of HTH and HHT get multiplied by o?
and the singular value of H by «

@ A quick review of Module 1.2 reveal that there are a number
of ways in which the above theory can be applied for the SVD
analysis of the data matrix, X
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SVD using second moment matrix

@ Set H= \%X € R™*M _ the raw data matrix

e Grammians: HTH = 1LXT X ¢ Rnxn
HHT = 1xxT ¢ gpmxm
n
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SVD using covariance matrix

@ Set H= %f( € R™*" - centered data or anomaly matrix

o Grammians: HTH = 1(X)TX € R™" - covariance
HHT = 1X(X)T € Rm*m
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SVD using normalized matrix

@ Set H= ﬁf( € R™*" _ normalized data matrix
e Grammians: HTH =

%()A( )TX — correlation
HHT = 1X(X)T
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SVD Analysis of H € R™*" : case 1 Let m > n

o Consider the smaller of the two grammians: HT H € R"™*"
o Let ()\;,v;) be an eigen pair of HTH : (HT H)v; = \;v; where
M A>-> A, >0 (16)
@ Define v=1[vi,vo,...,v)] € R" w' =vTv =1,
o A= Diag(A1,M\a,...,A\p) € R™"
@ Then
(HTH)v = vA (17)
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Case 1 - continued

@ Define 1
uj=—=HveR"1<i<n
1 \/x — =
o Verify: (\;, u;) be an eigenpair of HHT ¢ R™<™
o Let u=[uy,un,...,un] € R™" uTu=1I,
@ Then
(HHT)u = uA
S.Lakshmivarahan Module 6.4
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Case 1 - continued

e From (18)
Hv; = ui)\}/zforl <i<n (20)
@ Hence
Hyv = uAl/? (21)
e The SVD of H: H = uNY/2yT
= Z )\’1/2 uj V,'T (22)
i=1
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SVD of He R™" : Case 2 Let n > m

o Consider the smaller of the two grammians: HHT ¢ R™x™
o Let (\;,u;),1 < i< m be an eigen pair of HHT, that is
(HHT)u; = uj)\; where

A=A > > A >0 (23)
o If u=[up,u...,um] € R™M uu” =uu=In
then
(HH )u = ul (24)
where
A = Diag(M, A, ..., Am) € R (25)
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Case 2 - continued

@ Define
v = AHTu,-eR",1§i§m (26)
i
o Then (HTH)y; = \/lr_(HTH)HTu,- = J-HT(HHT)u;
I 7
= ﬁH Uidi = Vi (27)
1
that is (\;, v;) be an eigen pair of HT H
@ Setting v = [vi,v,...,vm] € R™™ | we get
(HTH)v = vA (28)
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Case 2 - continued

e From (26)
HTu; = viA*forl < i < m (29)

o Usingue R™™ yTu=uwu” =1,veR™™m
(29) becomes
HT — V/\1/2UT
o SVD of H : H = uNY/?yT

m
= Z Ajuivi (30)
i=1
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Use of SVD to approximate H

@ The SVD of H in (22) and (30) can be used in two distinct
ways to approximate H

o First: We can use SVD to decompose H into a signal and a
noise components

@ Second: We can use SVD to reduce the dimension m of the
data matrix H to d < m to obtain H; € RY*" that is an
approximation to H when m is large
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FIRST: Reconstruction of signal:Case 2: n > m

@ For definiteness, consider case 2 when n > m

o Let 0 < 3 <1 be a given(small) real number
eg: §=0.1,0.05,0.01 etc

@ Let k be the smallest integer such that

k m
DA=1-8)> N (31)
i=1 i=1

where \;'s ordered as in (15) and (23)
@ The signal component H; is given by

k
Hy=) " Ay (32)
i=1
@ The noise component H; is given by
Ho=H—Hi= Y lupy| (33)
i=k+1
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Signal - noise decomposition of H

@ Recall:
H = uAY2yT (34)

where u € R™M*n A\1/2 ¢ Rxn ¢ RXN and H € R™*N

o For the k in (31), define partitions of u, v and A1/2
u= [U]_’ U2]7 ug S Rka, u» (= RmX(n—k)
V= [V1, Vz], vi € ,’-?"Xk7 vy € Rnx(n—k)

1/2 /\}/2 0 1/2 kxk aAl/2 (n—k)x(n—k)
N/ = 12| M ERTEANTER
0 A
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Decomposition of H

@ Then /\}/2 . VlT
H=1|u u
(ur o] 0 AV [V2T]
= ul/\i/2 v + u2/\é/2 vy (35)

=Hi+H> (36)

@ Hj is the signal component and H, is the noise component
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A measure of the quality of approximation

@ In approximating H by H; in (35), we need to develop a
measure to quantify the goodness of the approximation

@ To this end, assume that the data matrix H is a full-rank
matrix, that is,

Rank(H) = min{m,n} = m (37)

@ It turns out that the signal part H; defined in (32) and (35)
enjoys the property of being the "best” rank-k approximations
to H in the sense that the noise component H, has an
inherent minimality under a suitably defined matrix norm
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Euclidean norm and energy of a vector

Let ac R"

The euclidean norm of the vector denoted by ||a|| is given by

lall = (af + 33 + -+ a3)'/? (38)

The square of this norm,||a||? is a measure of the generalized
energy associated with a

Clearly ||a|| = 0 exactly when a =10
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Frobenius norm and energy of a matrix

e Let Ac R™X"
@ The Frobenius norm of the matrix A, denoted by ||A||f is

given by
AR =D a? (39)

i=1 j=1
o ||Al|2 is a measure of the energy associated with A

o ||A||F = 0 exactly when A=0
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Outer product matrix

@ letue RMand v e R"
@ Then
B=uv" = [uv]
is a rank one matrix
o Let m=3 and n=2. Then

u vy
B = u» [Vl VQ] = | uzxvi
K] uzvy
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Energy of an outer product matrix

° 1BIIE =327 2y uf vy

]

=D ury vi=IulPlv (41)

m
i=1 j=1

@ Let u and v are unit vectors, then

1BIIE = [luvT|IE (42)
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A property of Frobenius norm

o Let Ac R™*" Then
||A[F = tr(AAT) (43)
o Let

A_|? b AAT — a2’ +b*> ac+ bd
“lec d|’ “ lac+ bd  ? + d?

o Verify (43)
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Energy in noise component H,

e From (35) and (36)
|Ha|[7 = t:(H2Hy)
= tr(uzl\;/2 v2Tv2/\;/2u2T)
= tr(uz/\guzT) [ V2TV2 = In—k]
::td§:z*+1AuuwT) L:U(wuf)::ﬂ

= Z )\,-tr(u,-u,-T): Z Aj (44)
i—k+1 i—k+1
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Optimality of the signal component H;

@ In the light of the ordering of the A;'s in (23)
|Hz2||%2 = sum of the least (m-k) eigenvalues of the
smaller Grammian HHT

o Hence, ||H||% is a minimum for any k that satisfies (31)
@ A similar arguments applies for the case 1 : n < m

@ We encourage the reader to fillout the details
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Second: Dimension reduction(DR): case 1 : m > n

e From (15):
H = uNY?yT (45)
@ Recall:
ue Rm><n7/\l/2 e Rn><n’ V e RN
T T T (46)
u'u=lIl,w' =viv=I,
@ (45) then becomes:
H=u"H=uTuN/?vT = p\V2,T (47)
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An useful partitioning of u, v, A

u=[u,u],u € R™9 up € RM*n—d

v =[v1,v],v1 € R™9 v, ¢ RTXn—d

e NP0 1/2 _ pdxd Al/2 _ _
AV2 = | A% e RIxd N2 ¢ R(n—d)x(n—d)
0 A1/2 ) 1 112
2

Then ulTU]_ = /d, U2TU2 = /n—d
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A partitioning of left hand side in (47)

o Substituting these partitions in the left hand side of (47) and

simplifying:
T T 7
il a-l -[R] e

o Hy € R and H, € RM—dxn
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A partitioning of the right hand side in (47)
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A root partition of H,

e Combining (47) - (49) :

A= [u{] (ur w) N = [Id 0] A2l — N2
uy /\;/2va 0 I /\;/2va /\;/2v2T

(50)
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Approximation of H by H; : DR

e H; € RY%" is called the d-dimensional approximation to
H e R™*" where d < m

o It turns out that this representation of H by H; has a natural
optimality property as proved below
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Energy in H, € R(m=d)xn

@ From the definition of the Frobenius norm,it follows that

1Az = [|Hi]|F + || Fa||7 (51)
e From (50):
[Ha[3 = tr(Fa, ")
= tr(/\;/zvavzl\;/z)
=tr(\) = > A (52)
i=d+1
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Optimality of H,

@ In the light of the ordering in (15), the right hand side of
(52) is the sum of the least (n-d) eigenvalues of the (smaller)
Grammian HTH € R™<"

@ Hence, H; enjoys the inherent optimality property of "optimal
reduced dimensional representation of H”
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