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A basic set up

Let x ∈ Rm be a random vector in L2

Without loss of generality: Assume x is centered

E(x) = 0 and Cov(x) = Σ ∈ Rm×m

Assume that Σ is SPD
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Eigen decomposition of Σ

Let (λi , vi ) be an eigenpair of Σ

That is,
Σvi = viλi , 1 ≤ i ≤ m (1)

Define v = [v1, v2, . . . , vm] ∈ Rm×m, an orthogonal matrix of
eigenvectors of Σ.

vT v = vvT = Im

Define
Λ = Diag(λ1, λ2, . . . , λm) ∈ Rm×m (2)

Let
λ1 > λ2 > . . . λm > 0 (3)

Then

Σv = vΛ,Σ = vΛvT , vΣvT = Λ (4)
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Eigenvalue and variance

Define

Var(x) =
m∑
i=1

Var(xi ) =
m∑
i=1

E (x2
i ) = E (xT x) (5)

But E (xT x) = E [tr(xxT )]
= tr[E(xxT )]

= tr(Σ) = tr(vΛvT )
= tr( vT vΣ)(∵ tr(AB) = tr(BA))

= tr(Σ) = Σm
i=1λi (6)

Sum of the variance of the components of x = sum of the
eigenvalues of the covariance matrix of x
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Statement of the problem

Find a set of m deterministic, orthonormal vectors
{ξ1, ξ2, ξ3, . . . , ξm} where each ξi ∈ Rm and a set of m
uncorrelated random coefficients {α1, α2, α3, . . . , αm} such
that

(1) x = α1ξ1 + α2ξ2 + . . .+ αmξm (7)

and

(2) var(αiξi ) = λi , 1 ≤ i ≤ m (8)

Such a set of orthonormal vectors called the principal patterns
and the set of associated random coefficients are called the
principal components.
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Rayleigh Quotient and its properties

To this end, let A ∈ Rm×m be an SPD and η ∈ Rm

Given A, define a functional, rA(η) : Rm → R as

rA(η) =
ηTAη

ηTη
(9)

Let (µ, ξ) be an eigenpair of A: Aξ = µξ

Then

rA(ξ) =
ξTAξ

ξT ξ
= µ (10)

Since the eigenvectors are normalized: ξT ξ = 1,

rA(ξ) = ξTAξ = µ (11)
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Rayleigh Quotient for A = Σ

Recall that vi is a normalized eigenvector corresponding to
the eigenvalue λi , 1 ≤ i ≤ m of the covariance matrix Σ of
the random vector, x.

From (11):

rΣ(vi ) = vTi Σvi = λi (12)

In view of the ordering of the eigenvalues in (3):

rΣ(v1) > rΣ(v2) > . . . > rΣ(vm) (13)
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A linear functional of x

Consider the eigenpair (λi , vi ) of Σ:
Σvi = viλi , v

T
i vi = 1 for 1 ≤ i ≤ m

Define a new random variable

αi = vTi x (14)

which is a linear functional of x

Then,

E (αi ) = E (vTi x) = vTi E (x) = 0 (15)

var(αi ) = E (α2
i ) = E [(vTi x)(vTi x)] = vTi E (xxT )vi

= vTi Σvi = λi
(16)
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Properties of the random vector αivi

E (αivi ) = E [(vTi x)vi ] = E [(vTi x)]vi = 0 (17)

Let the vector vi = (h1, h2, . . . , hm)T with vTi vi = 1

Then,

var(αivi ) =
m∑
j=1

var(αihj) =
m∑
j=1

h2
j var(αi )

= λi

m∑
j=1

h2
j = λi

(18)

S.Lakshmivarahan Module 6.1 9 / 36



Correlation between αi and αj

cov(αi , αj) = E (αiαj) = E [(vTi x)vTj x ] = vTi E (xxT )vj

= vTi Σvj = 0
(19)

since vTΣv = Λ, a diagonal matrix

That is, αi and αj are uncorrelated for i 6= j
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Solution to the problem stated above

By setting ξi = vi in (7), we first identify the required set of
m orthogonal eigenvectors of Σ that constitute a basis for Rm

By setting αi = (vTi x) in (7) we identify the required set of
uncorrelated random coefficient such that var(vTi x) = λi

Indeed, the required expansion of x is given by

x = (vT1 x)v1 + (vT2 x)v2 + · · ·+ (vTm x)vm (20)
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Projection matrix along an eigenvector of Σ

Recall that the orthogonal projection matrix, Ph ∈ Rm×m

along the direction h ∈ Rm is given by

Ph = h(hTh)−1hT (21)

Setting h = v a normalized eigenvector of Σ,

Pv = v(vT v)−1vT = vvT ∈ Rm×m (22)

S.Lakshmivarahan Module 6.1 12 / 36



Projection of x along the eigenvector of v

Pvx = (vvT )x = v(vT x) = (vT x)v (23)

Consequently, each of the m terms in the summand on the
right hand side of (20) is a vector resulting from the
orthogonal projections of x along the m orthogonal basis of
Rm which are eigenvectors of Σ
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Equivalent representations of points in Rm

The random vector X ∈ Rm denotes a point Rm which in the
standard orthogonal basis is given by

X =
m∑
i=1

Xiei (24)

where ei ∈ Rm in the i th unit vector

In the new orthonormal basis of principle patterns defined by
the eigenvectors of cov(x) = Σ, the point x is given by

X =
m∑
i=1

αivi and αi = XT vi (25)

Thus, the same point in Rm admits two labels x and
α = (α1, α2, . . . , αm)T , the Principal components
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Principal component transform

α =


α1

α2
...
αm

 =


vT1
vT2

...
vTm

 x = vT x (26)

That is, the principal component α is obtained by a linear
transform vT of x as α = vT x

Conversely,
x = vα (27)

While var(x) = var(α), the principal component has the
additional property that

var(α1) > var(α2) > . . . var(αm) > 0 (28)
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Covariance of x and α

Components of x are correlated but those of α are
uncorrelated

cov(x , α) = E (xαT )− E (x)E (αT )
= E (xαT ) (∵ E (x) = 0)
= E (xxT v) = Σv = vΣvT v

= vΣ (29)
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Correlation between xi and αi

Ωij = cor(xi , αj) =
cov(xi ,αj )

[var(xi )var(αj )]1/2

From (29):
cov(xi , αj) = (vΣ)ij = vijλj (30)

var(αj) = λj from (16)

Hence,

Ωij =

√
λjvij

[var(xi )]1/2
(31)
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An interpretation of Ωij

Verify

m∑
j=1

Ω2
ij =

1

var(xi )

m∑
j=1

λjv
2
ij =

(vΛvT )ii
var(xi )

= 1 (32)

Hence, Ω2
ij denotes the fraction of the variance of xi explained

by the principal component αj
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Example 1

Let m=2 and x ∼ N(0,Σ) where

Σ =

[
1 ρ
ρ 1

]
and ρ > 0

var(x1) = 1 = var(x2), cov(x1, x2) = ρ

Verify that
λ1 = 1 + ρ and λ2 = 1− ρ

are the eigenvalues of Σ

Verify that

v1 = 1√
2

[
1
1

]
and v2 = 1√

2

[
1
−1

]
are the corresponding eigenvectors of Σ
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Example 1(Continued)

The principal component transform matrix, using(26) is given
by

vT =

[
vT1
vT2

]
= 1√

2

[
1 1
1 −1

]
The principal components are

α =

[
α1

α2

]
= vT x = 1√

2

[
1 1
1 −1

] [
x1

x2

]
α1 = 1√

2
(x1 + x2), α2 = 1√

2
(x1 − x2)
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Variance of principal components

var(α1) = var( 1√
2

(x1 + x2)) = 1
2E [(x1 + x2)2]

= 1
2 [var(x1) + var(x2) + 2cov(x1, x2)]

= 1 + ρ = λ1

var(α1) = vT1 Σv1 = 1
2

[
1 1

] [1 ρ
ρ 1

] [
1
1

]
= 1 + ρ

Verify
var(α2) = 1− ρ = λ2
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A comparison of variances of components of x and α

x is such that var(x1) = 1 = var(x2)

α is such that var(α1) = 1 + ρ, var(α2) = 1− ρ
var(α1) > var(α2) , since ρ > 0
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Covariance between x and α

From (29)

cov(x , α) = vΣ = 1√
2

[
1 1
1 −1

] [
1 ρ
ρ 1

]
= 1√

2

[
1 + ρ 1 + ρ
1− ρ ρ− 1

]
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Correlations Ωij between xi and αi

From (31), since var(x1) = var(x2) = 1
Ω11 =

√
λ1v11 = ( 1+ρ

2 )1/2

Ω12 =
√
λ2v12( 1−ρ

2 )1/2

Ω21 =
√
λ1v21 = ( 1+ρ

2 )1/2

Ω22 =
√
λ2v22( 1−ρ

2 )1/2

Ω2
11 + Ω2

12 = 1
2 [1 + ρ+ 1− ρ] = 1

Ω2
21 + Ω2

22 = 1
2 [1 + ρ+ 1− ρ] = 1
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Example 2

Let x ∈ Rm and x ∼ N(µ,Σ),Σ - SPD

Let Σ = vΛvT be the eigen decomposition

Principal components, α = vT (x − µ)

E (αi ) = 0, var(αi ) = λi , 1 ≤ i ≤ m

cov(αi , αj) = 0 for i 6= j

var(αi ) ≥ var(α2) ≥ · · · ≥ var(αm) > 0
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Example 2(continued)

var(x) = tr(Σ) =
∑m

i=1 var(αi )∏m
i=1 var(αi ) =

∏m
i=1 λi = det(Σ)
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GOAL OF SDA

Recall that the ultimate goal of statistical any data analysis is
to explain the observed spread as measured by the variance in
the data

The total variance in the data can be modeled as the sum of
the natural/inherent variation in the signal component and
that of the additive noise that corrupts the signal
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A look back

The above analysis rests on two basic observations

(a) The total variance in the given random vector x ∈ Rm is
equal to the sum of the non-negative eigenvalues of the
covariance matrix, Σ and x
(b) The variance of the projection of x along an eigenvector of
Σ is qual to the associated eigenvalue
(c) The resulting additive decomposition of x as a linear
combination of uncorrelated components in (20) is critical to
the use of principal component analysis
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A natural partitioning of variance

Under the assumption that the eigenvalues of Σ are distinct,
by ordering them in the decreasing order, it is immediate that
the i th component (xT vi ) of x inherits the fraction
(λi/

∑m
i=1 λi ) of the total variance in x

Given any β small(such as 0.01,0.05,etc..,) we can find an
integer k,(1 ≤ k ≤ m) such that∑k

i=1 λi∑m
i=1 λi

≥ 1− β (33)
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Reconstruction

That is, the first k eigen direction corresponding the k largest
eigenvalues together inherit atleast (1− β) times the total
variance

Using these k components, we can reconstruct the signal
component(see Exercise 1)

x̂ =
k∑

i=1

(xT vi )vi (34)

The rest given by

x − x̂ =
m∑

i=k+1

(xT vi )vi (35)

is often treated as the noise component in x
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Special case

In the event that the components of x are uncorrelated, then
Σ would be a diagonal matrix consisting of the eigenvalues
which are the variance associated with the components

In this case

x =
m∑
i=1

λiei (36)

where ei ∈ Rm is the standard i th unit vector with 1 in the i th

location and the zero elsewhere

Consequently, unless the condition number λ1
λm

is large or the

ratio λ1−λm
λ1

is close to 1, we may not get a k-mode
approximation to x for small values of k
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Quality of signal approximation

The quality of the approximation in (34) can be measured by
quantifying the variance of the difference (x − x̂) in (35)

Recall from (14)-(16) that E (xT vi ) = 0 and var(xT v) = λi

Hence,

var(x − x̂) = E [(x − x̂)T (x − x̂)] (37)
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Quality of signal(continued)

Substituting (35) in (37) and simplifying:

var(x − x̂) = E [(
∑m

i=k+1(xT vi )vi )(
∑m

j=k+1(xT vj)vj)
T ]

= E [
∑m

i=k+1(xT vi )vi )
2] [∵ vi⊥vj ]

=
m∑

i=k+1

E (xT vi )
2 =

m∑
i=k+1

λi (38)
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Inherent Optimality

From the ordering of λi ’s in (3), it is immediate that the sum
on the right hand side of (38) is the sum of the least (m-k)
values of λ and hence is a minimum for every k
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Exercises

Consider the expression in (34):

x̂ = (xT v1)v1 + (xT v2)v2 + · · ·+ (xT vl)vk (39)

using (xT vi )vi = vi (x
T vi ) = vi (v

T
i x) = (viv

T
i )x rewrite x̂ in

(39) as

x̂ = [(v1v
T
1 ) + (v2v

T
2 ) + · · ·+ (vkv

T
k )]x (40)

=
[
v1 v2 . . . vk

]

vT1
vT2

...
vTk

 x

= V [I − k]V T x
where V ∈ Rm×m and k = Diag(k11, k22, . . . , kmm) with

kii = 0 for 1 ≤ i ≤ k
= 1 for k + 1 ≤ 1 ≤ m
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PCA an optimal process

Given a random vector x ∈ Rm, find the principal patterns an
components as an optimization process

There are two key steps in this development

First, given a k-dimensional subspace sk of Rm for
1 ≤ k ≤ m, find the best approximation x̂(k) of x where
x̂(k) ∈ sk

Second, find the specific subspace sk that inherits the
maximum variance of x
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Specification of sk

Let sk be spanned by the orthonormal columns of H ∈ Rm×k

given by

From
H = [h1, h2, . . . , hk ] (1)

hTi hj = 0 for i 6= j
= 1 for i = j

Verify

HTH = Ik (2)

HHT ∈ Rm − symmetric

(HHT )2 = HHT − idempotent
(3)
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Best approximation x̂(k)

Let

x̂(k) = Hα, α ∈ RK (4)

By orthogonal projection theorem: using(2)

α = (HTH)−1HT x = HT x (5)

That is

αi = hTi x for 1 ≤ i ≤ k (6)
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Error in the projection

e = x − x̂(h) = x − Hα = x − HHT x = (Im − HHT )x (7)
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Variance of the error

var(e) = E [eT e]
= E [xT (I − HHT )T (I − HHT )x ]
= E [xT (I − HHT )2x ]
= E [xT (I − HHT )x ]

= E (xT x)− E [(xTH)(HT x)] (8)
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Variance of the error

E (xT x) = var(x) = tr(Σ) (9)

E [(xTH)(HT x)] = E [αTα] (using(5))

=
k∑

i=1

E (α2
i ) (10)

E (α2
i ) = E [hTi xh

T
i x ] = E [hTi xx

Thi ]
= hTi E (xxT )hi

= hTi Σhi (11)
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Variance of the error

Substituting (9),(10) and (11) in (8):

var(e) = tr(Σ)−
k∑

i=1

hTi Σhi (12)

Since tr(Σ) is fixed, var(e) is a minimum when the second
term on the right hand side of (12) that represents the total
variance of the k principal component αi , 1 ≤ i ≤ k is a
maximum
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Optimization problem

Let

Q =
k∑

i=1

hTi Σhi (13)

Goal is to maximize (13) subject to two conditions on
hi , 1 ≤ i ≤ k:

hTi hi = 1 and hTi hj = 0 for i 6= j (14)
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Lagrangian, L

Build the Lagrangian

L(H, µ, η) =
k∑

i=1

hTi Σhi +
k∑

i=1

µi (1− hTi hi ) +
∑
i 6=j

ηijh
T
i hj

(15)
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Necessary condition(NC) for a maximum

5hiL = 0

= 2Σhi − 2µihi + Σj 6=iηijhj (16)
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NC for maximum

Multiplying both sides on the left by hTi and exploiting the
orthonormality of hi ’s:

0 = 2hTi Σhi − 2µih
T
i hi +

∑
j 6=i ηijh

T
i hj

= 2[hTi Σhi − µi ] (17)

Hence

hTi Σhi = µi or Σhi = µihi (18)
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Relation to eigen structure of Σ

From (18): (µi , hi ) are the eigen pair of Σ

Since we are interested in the maximum of the sum

k∑
i=1

hTi Σhi =
k∑

i=1

µi (19)

it follows that (λi , hi ) are the eigen pairs of Σ corresponding
to the k largest eigenvalues of Σ where we assume that

µ1 > µ2 > · · · > µk > . . . µm > 0 (20)
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Langrangian multipliers ηij

Multiplying both sides of (16) on the left by hp, p 6= i

0 = 2hTp Σhi − 2µih
T
p hi +

∑
j 6=i

ηijh
T
p hj (21)

Since HTΣH = Diag(µ1, µ2, . . . , µk), hTp Σhi = 0 for p 6= i

Since p 6= i , the only term that survives for j = p 6= i which is
ηip

Hence
ηip = 0 (22)
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Langrangian multipliers ηij

By running p over the set 1, 2, . . . , k and p 6= i , for (k-1)
values of p 6= i , we get

ηip = 0 (23)

By repeating this argument for each i, it follows that all ηij
for i 6= j are all zeros
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Summary

By choosing the k-orthonormal columns of H to be the
k-orthonormal eigenvectors corresponding to the k largest
eigenvalues of Σ, we maximize the sum

k∑
i=1

hTi Σhi =
k∑

i=1

µi (24)
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PC expansion for x

Recall v ∈ Rm×m and Λ = Diag(λ1, . . . , λm) :

vTΣv = Λ or Σ = vΛvT (25)

Setting k = m,H = v ,
µi = λi (26)

From (4):

x = x̂(m) = vα and α = vT x (27)

which is the same as in Module 6.1
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Example

An example may help illustrate the derivation of the necessary
condition for maximum in (16)

Set k = 3
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Three equations for i = 1, 2, 3

From (16) we get

0 = 2Σh1 − 2µ1h1 + η12h2 + η13h3 (28)

0 = 2Σh2 − 2µ2h2 + η21h1 + η23h3 (29)

0 = 2Σh3 − 2µ3h3 + η31h1 + η32h2 (30)

S.Lakshmivarahan Module 6.2 19 / 21



Conditions from (28)

Multiplying both sides of (28) in turn on the left by hT1 , h
T
2

and hT3 , using orthonormality we get

0 = 2hT1 Σh1 − 2µ1h
T
1 h1 =⇒ Σh1 = µ1h1

0 = 2hT2 Σh1 − 2µ1h
T
2 h1 + η12h

T
2 h2 + η13h

T
2 h3 we get η12 = 0

0 = 2hT3 Σh3 − 2µ1h
T
3 h1 + η12h

T
3 h1 + η13h

T
3 h3 we get η13 = 0
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Conditions from (29)

Multiplying both sides of (29) in turn on the left by hT1 , h
T
2

and hT3 , we get
Σh2 = µ2h2, η21 = 0, η23 = 0

Similar action on (30) gives
Σh3 = µ3h3, η31 = 0, η32 = 0
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Why data matrix ?

Analysis thus far assumed the knowledge of the properties of a
random vector x ∈ Rm

In real world applications, we do not know these second-order
properties
Have access only to an ensemble of realization of x obtained
through direct measurements
First step: organize this ensemble data in the form of a data
matrix where each column is a realization of x
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Data matrix : x ∈ Rm×n

x =

1 2 . . . j . . . n



1
2
...
i
...

m

Each column of x refer to an object
Each row of x refer to an attribute of the object
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Data matrix

The j th column, x∗j refer to the profile of the j th object
The i th row, xi∗ refer to the values of the i th attribute of all
the objects
xij is the i th attribute of the j th object
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Example 1 - Classification of Students

Objects refer to n students in a class
The m attributes refer to the grades in a set of m-courses
taken by each of the n student
xij is the grade of the j th student in the i th course
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Example 2 - Classification of Humans

Objects refer to a set of n humans
Attributes may refer to height, color of skin, weight, length of
the torso, education, head size, color of the eye, blood group
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Example 3 - Classification of Models

The set of n objects may denote a set of initial condition for a
class of models
The attribute may denote the solution of the model on a 2-D
grid with m = mxmy points
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Example 4 - Meteorology

In weather analysis/prediction, it is of interest to understand
the variation of the (geopotential) height of the atmosphere at
different pressure levels, say 900, 700, 500, 300, 100 mbar

100 5
300 4
500 3
700 2
900 1

m = 5 levels
Geopotential, φ is defined as the work required to raise unit
mass from the surface of the earth to height h:
φ(h) =

∫ h
0 gdh
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Example 4 - Continued

Baloons with instruments for measuring pressure, height,
temperature, humidity etc are hoisted from a given location
Once a day, for 120 days with 15 days before the start and 15
days after the and of a given season - say winter in northern
hemisphere for 10 successive years
Here m = 5, n = 120× 10 = 1, 200 days
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Example 5 - Climate Analysis

Spatio-temporal distribution of sea surface temperature(SST)
across the globe, distribution of the concentration of green
house gases etc, is of great interest in climate studies
For simplicity, consider a 2-D version of this problem
Pick a domain of interest and embed an uniform 2-D grid with
mx number of points along the east-west and my number of
points, along the north-south direction for a total of
m = mxmy points
Here x is a random vector of size m
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2-D grid numbering

Consider a grid with mx = 4 and my = 5 for a total 20 points
Points are labeled with two indices (p,q) where p refers to the
level and q refers to the node at that level
4,3 is the third node at the fourth level

1,1

2,1

3,1

4,1

5,1

1,2

2,2

3,2

4,2

5,2

1,3

2,3

3,3

4,3

5,3

1,4

2,4

3,4

4,4

5,4

my = 5

mx = 4
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Row / Column major order

From computing perspective, it is useful to number the nodes
using a simple index so that the data across the grid can be
stored in an 1-D array
Two possibilities: map (p,q) to a single integer
Row major order : k = (p − 1)mx + q
Column major order : s = (q − 1)my + p
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Re-numbered 2-D grid

1

5

9

13

17

2

6

10

14

18

3

7

11

15

19

4

8

12

16

20

Row-major order
(p, q)= (4, 3) ⇔ k = 15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Column-major order
(p, q)= (4, 3) ⇔ s = 14
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Generation of data matrix

Let mx = 31 and my = 16 with m = 496
Let a1 ∈ N(0, σ2

1), a2 ∈ N(0, σ2
2), ε(x , y) ∈ N(0, σ2

3)

Define, for 1 ≤ t ≤ 100

g1(x , y , t) = a1(t)cos(
πx

30
)cos(

πy

15
) (1)

g2(x , y , t) = a2(t)cos(
πx

15
)cos(

πy

7
) (2)

Let

g(x , y , t) = g1(x , y , t) + g2(x , y , t) + ε(x , y , t) (3)
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First column of the Data matrix (without noise ε(x , y , t))

Set t = 1, generate a1(1) and a2(1) by setting σ2
1 = 0.6 and

σ2
2 = 0.3

For 0 ≤ x ≤ 30 and 0 ≤ y ≤ 15, compute
g1(x , y , 1), g2(x , y , 1) and g(x , y , 1) = g1(x , y , 1) + g2(x , y , 1)
to obtain a column vector using column major order, for
example Z∗1 ∈ R496 which is the first column of the data
matrix, Z ∈ R496×n
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Entire matrix Z ∈ R496×100

For t = n = 2, 3, . . . , 100, repeat the above process by
generating a new pair, (a1(t), a2(t)) of random numbers and
compute the tth column of Z for 2 ≤ n ≤ 100
Clearly, each row corresponds to a grid point and each column
to an instant in time
The j th column gives the profile of the variable of interest
across the grid at time j
The i th row gives the distribution of the variable at a grid
point across time.
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Noisy data matrix Z̄ ∈ R496×100

For each time index t, 1 ≤ t = n ≤ 100, generate the spatial
noise vector η(t) ∈ Rm,m = 496 where the components are
uncorrelated gaussian noise with mean zero and variance
σ2

3 = 0.2
Repeating this process N = 100 times, create a matrix
η ∈ Rm×n

Create a noisy data matrix :

Z̄ = Z + η (4)

where t was obtained earlier
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Noiseless and noisy data matrices

The matrix Z ∈ R496×100 is a data matrix that represent a
100 member ensemble of realization of the 2-D field variable
g(x,y,t) defined in (3) by setting ε(x , y , t) = 0
The matrix Z̄ ∈ R496×100 is a data matrix that represents a
100 member ensemble of the noisy realization of the field
variable g(x,y,t) in (3) with the noise matrix η added to Z,
that is, Z̄ = Z + η

These two matrices will be used to test the methodology
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Population vs. sample based PCA

PCA

Population PCA

x ∈ Rm, random vector

µ,Σ - known

Σ = vΛvT

x =
∑m

i=1(xT vi )vi

Reconstructed x = x̂ =∑k
i=1(xT vi )vi

Sample based PCA

µ,Σ - not known

Work with data
matrix, x ∈ Rm×n

Estimate µ̂, Σ̂

PCA based on µ̂, Σ̂
called EoF based
analysis
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Data matrix

Assume that the raw data matrix, X ∈ Rm×n is given

First step towards EoF analysis is to extract the underlying
covariance/correlation structure of data

This calls for transforming the data:

centering
normalizing, if the units across the rows of z are widely
different
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Compute row mean

Let Jn = (1, 1, . . . , 1)T ∈ Rn be a column vector of all 1’s.
J4 = (1, 1, 1, 1)T

Let M = (M1,M2, . . . ,Mm)T be the row mean vector where

Mi =
1

n

n∑
j=1

xij =
1

n
(Xi∗)Jn (1)

Then

M =
1

n
XJn (2)
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Centering the data

Let

X̃ = [X̃ij ] ∈ Rm×n (3)

be the centered data matrix where

X̃ij = Xij −Mi , 1 ≤ i ≤ m, 1 ≤ j ≤ n (4)

Then

X̃ = [X −MJn
T ] (5)

where MJn
T is the m × n outer product matrix
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Normalized data

Let si
2 be the sample variance of the i th row of X. Then

si
2 =

1

n − 1

n∑
j=1

(Xij −Mi )
2 =

1

n − 1

n∑
j=1

(X̃ij)
2

(6)

The normalized data matrix, X̂ is given by

X̂ = [X̂ij ] and X̂ij =
X̃ij

si
(7)
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Normalized data matrix

Define a diagonal matrix

D = diag(s21 , s
2
2 , . . . , s

2
m) (8)

consisting of m sample variances across the diagonal of D

Then

X̂ = D−1/2X̃ (9)

where

D1/2 = Diag(s1, s2, . . . , sm) (10)
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Covariance matrix, C ∈ Rm×m

Let C = cov(x) be the sample covariance of the data in the
matrix X

That is,

Cij =
1

n − 1

n∑
k=1

X̃ik X̃jk for i 6= j

=
1

n − 1

n∑
k=1

(X̃ik
2
) = s2i for i = j

(11)

Then

C =
1

n − 1
X̃ (X̃ )T (12)
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Correlation matrix, R ∈ Rm×m

Let R = cov(x̂) be the sample correlation matrix

That is,

Rij =
1

n − 1

n∑
k=1

(X̂ik X̂jk) for i 6= j

=
1

n

n∑
k=1

(X̂ik)2 = 1 for i = j

(13)

Then

cor(z) = cov(ẑ) =
1

n − 1
X̂ (X̂ )T = D−1/2

X̃ (X̃ )T

(n − 1)
D−1/2

= D−1/2CD−1/2

(14)

Clearly:
|Rij ≤ 1| (15)
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A prelude to SVD analysis

Module 1.2 contains the theoretical basis for SVD analysis of
a general matrix, H ∈ Rm×n

Recall that if we multiply H by a constant α > 0, the
non-zero eigenvalues of HTH and HHT get multiplied by α2

and the singular value of H by α

A quick review of Module 1.2 reveal that there are a number
of ways in which the above theory can be applied for the SVD
analysis of the data matrix, X
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SVD using second moment matrix

Set H = 1√
n
X ∈ Rm×n - the raw data matrix

Grammians: HTH = 1
nX

TX ∈ Rn×n

HHT = 1
nXX

T ∈ Rm×m
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SVD using covariance matrix

Set H = 1√
n
X̃ ∈ Rm×n - centered data or anomaly matrix

Grammians: HTH = 1
n (X̃ )T X̃ ∈ Rn×n - covariance

HHT = 1
n X̃ (X̃ )T ∈ Rm×m
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SVD using normalized matrix

Set H = 1√
n
X̂ ∈ Rm×n - normalized data matrix

Grammians: HTH = 1
n (X̂ )T X̂ − correlation

HHT = 1
n X̂ (X̂ )T
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SVD Analysis of H ∈ Rm×n : case 1 Let m > n

Consider the smaller of the two grammians: HTH ∈ Rn×n

Let (λi , vi ) be an eigen pair of HTH : (HTH)vi = λivi where

λ1 ≥ λ2 ≥ · · · ≥ λn > 0 (16)

Define v = [v1, v2, . . . , vn] ∈ Rn×n, vvT = vT v = In

Λ = Diag(λ1, λ2, . . . , λn) ∈ Rn×n

Then

(HTH)v = vΛ (17)
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Case 1 - continued

Define

ui =
1√
λi
Hv ∈ Rm, 1 ≤ i ≤ n (18)

Verify: (λi , ui ) be an eigenpair of HHT ∈ Rm×m

Let u = [u1, u2, . . . , un] ∈ Rm×n, uTu = In

Then

(HHT )u = uΛ (19)
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Case 1 - continued

From (18)

Hvi = uiλ
1/2
i for1 ≤ i ≤ n (20)

Hence

Hv = uΛ1/2 (21)

The SVD of H : H = uΛ1/2vT

=
n∑

i=1

λ
1/2
i uiv

T
i (22)
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SVD of H ∈ Rm×n : Case 2 Let n > m

Consider the smaller of the two grammians: HHT ∈ Rm×m

Let (λi , ui ), 1 ≤ i ≤ m be an eigen pair of HHT , that is
(HHT )ui = uiλi where

λ1 ≥ λ2 ≥ · · · ≥ λm > 0 (23)

If u = [u1, u2, . . . , um] ∈ Rm×m, uuT = uTu = Im
then

(HHT )u = uΛ (24)

where
Λ = Diag(λ1, λ2, . . . , λm) ∈ Rm×m (25)
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Case 2 - continued

Define

vi =
1√
λi
HTui ∈ Rn, 1 ≤ i ≤ m (26)

Then (HTH)vi = 1√
λi

(HTH)HTui = 1√
λi
HT (HHT )ui

=
1√
λi
HTuiλi = viλi (27)

that is (λi , vi ) be an eigen pair of HTH

Setting v = [v1, v2, . . . , vm] ∈ Rn×m , we get

(HTH)v = vΛ (28)
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Case 2 - continued

From (26)

HTui = viλ
1/2
i for1 ≤ i ≤ m (29)

Using u ∈ Rm×m, uTu = uuT = I , v ∈ Rn×m

(29) becomes
HT = vΛ1/2uT

SVD of H : H = uΛ1/2vT

=
m∑
i=1

λiuiv
T
i (30)
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Use of SVD to approximate H

The SVD of H in (22) and (30) can be used in two distinct
ways to approximate H

First: We can use SVD to decompose H into a signal and a
noise components

Second: We can use SVD to reduce the dimension m of the
data matrix H to d < m to obtain H̄1 ∈ Rd×n that is an
approximation to H when m is large
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FIRST: Reconstruction of signal:Case 2: n > m

For definiteness, consider case 2 when n > m

Let 0 ≤ β ≤ 1 be a given(small) real number
eg: β = 0.1, 0.05, 0.01 etc

Let k be the smallest integer such that

k∑
i=1

λi ≥ (1− β)
m∑
i=1

λi (31)

where λi ’s ordered as in (15) and (23)

The signal component H1 is given by

H1 =
k∑

i=1

λiuiv
T
i (32)

The noise component H2 is given by

H2 = H − H1 =
m∑

i=k+1

λiuiv
T
i (33)
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Signal - noise decomposition of H

Recall:

H = uΛ1/2vT (34)

where u ∈ Rm×n,Λ1/2 ∈ Rn×n, v ∈ Rn×n and H ∈ Rm×n

For the k in (31), define partitions of u, v and Λ1/2

u = [u1, u2], u1 ∈ Rm×k , u2 ∈ Rm×(n−k)

v = [v1, v2], v1 ∈ Rn×k , v2 ∈ Rn×(n−k)

Λ1/2 =

[
Λ
1/2
1 0

0 Λ
1/2
1

]
Λ
1/2
1 ∈ Rk×k ,Λ

1/2
2 ∈ R(n−k)×(n−k)

S.Lakshmivarahan Module 6.4 22 / 39



Decomposition of H

Then

H =
[
u1 u2

] [Λ
1/2
1 0

0 Λ
1/2
1

] [
vT1
vT2

]
= u1Λ

1/2
1 vT1 + u2Λ

1/2
2 vT2 (35)

= H1 + H2 (36)

H1 is the signal component and H2 is the noise component
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A measure of the quality of approximation

In approximating H by H1 in (35), we need to develop a
measure to quantify the goodness of the approximation

To this end, assume that the data matrix H is a full-rank
matrix, that is,

Rank(H) = min{m, n} = m (37)

It turns out that the signal part H1 defined in (32) and (35)
enjoys the property of being the ”best” rank-k approximations
to H in the sense that the noise component H2 has an
inherent minimality under a suitably defined matrix norm
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Euclidean norm and energy of a vector

Let a ∈ Rn

The euclidean norm of the vector denoted by ||a|| is given by

||a|| = (a21 + a22 + · · ·+ a2n)1/2 (38)

The square of this norm,||a||2 is a measure of the generalized
energy associated with a

Clearly ||a|| = 0 exactly when a = 0
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Frobenius norm and energy of a matrix

Let A ∈ Rm×n

The Frobenius norm of the matrix A, denoted by ||A||F is
given by

||AF || = [
m∑
i=1

n∑
j=1

a2ij ]
1/2

(39)

||A||2F is a measure of the energy associated with A

||A||F = 0 exactly when A = 0

S.Lakshmivarahan Module 6.4 26 / 39



Outer product matrix

Let u ∈ Rm and v ∈ Rn

Then

B = uvT = [uivi ] (40)

is a rank one matrix

Let m = 3 and n = 2. Then

B =

u1u2
u3

 [v1 v2
]

=

u1v1 u1v2
u2v1 u2v2
u3v1 u3v2


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Energy of an outer product matrix

||B||2F =
∑m

i=1

∑n
j=1 u

2
i v

2
j

=
m∑
i=1

u2i

n∑
j=1

v2j = ||u||2||v ||2 (41)

Let u and v are unit vectors, then

||B||2F = ||uvT ||2F (42)
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A property of Frobenius norm

Let A ∈ Rm×n. Then

||A||2F = tr(AAT ) (43)

Let

A =

[
a b
c d

]
, AAT =

[
a2 + b2 ac + bd
ac + bd c2 + d2

]
Verify (43)
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Energy in noise component H2

From (35) and (36)
||H2||2F = tr (H2H

T
2 )

= tr(u2Λ
1/2
2 vT2 v2Λ

1/2
2 uT2 )

= tr(u2Λ2u
T
2 ) [∴ vT2 v2 = In−k ]

= tr(
∑m

i=k+1 λiuiv
T
i ) [∴ tr(uiu

T
i ) = 1]

=
m∑

i=k+1

λi tr(uiu
T
i ) =

m∑
i=k+1

λi (44)

S.Lakshmivarahan Module 6.4 30 / 39



Optimality of the signal component H1

In the light of the ordering of the λi ’s in (23)
||H2||2F = sum of the least (m-k) eigenvalues of the

smaller Grammian HHT

Hence, ||H2||2F is a minimum for any k that satisfies (31)

A similar arguments applies for the case 1 : n < m

We encourage the reader to fillout the details
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Second: Dimension reduction(DR): case 1 : m > n

From (15):

H = uΛ1/2vT (45)

Recall:
u ∈ Rm×n,Λ1/2 ∈ Rn×n,V ∈ Rn×n

uTu = In, vv
T = vT v = In

(46)

(45) then becomes:

H̄ = uTH = uTuΛ1/2vT = Λ1/2vT (47)
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An useful partitioning of u, v, Λ

u = [u1, u2], u1 ∈ Rm×d , u2 ∈ Rm×n−d

v = [v1, v2], v1 ∈ Rn×d , v2 ∈ Rn×n−d

Λ1/2 =

[
Λ
1/2
1 0

0 Λ
1/2
2

]
, Λ

1/2
1 ∈ Rd×d ,Λ

1/2
2 ∈ R(n−d)×(n−d)

Then uT1 u1 = Id , u
T
2 u2 = In−d
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A partitioning of left hand side in (47)

Substituting these partitions in the left hand side of (47) and
simplifying:

H̄ =

[
uT1
uT2

]
H =

[
uT1 H
uT2 H

]
=

[
H̄1

H̄2

]
(48)

H̄1 ∈ Rd×n and H̄2 ∈ Rm−d×n
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A partitioning of the right hand side in (47)

Λ1/2vT =

[
Λ
1/2
1 0

0 Λ
1/2
2

] [
vT1
vT2

]
=

[
Λ
1/2
1 vT1

Λ
1/2
2 vT2

]
(49)
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A root partition of H1

Combining (47) - (49) :

H̄ =

[
uT1
uT2

] [
u1 u2

] [Λ
1/2
1 vT1

Λ
1/2
2 vT2

]
=

[
Id 0
0 In−d

] [
Λ
1/2
1 vT1

Λ
1/2
2 vT2

]
=

[
Λ
1/2
1 vT1

Λ
1/2
2 vT2

]
=

[
H̄1

H̄2

]
(50)
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Approximation of H by H1 : DR

H̄1 ∈ Rd×n is called the d-dimensional approximation to
H ∈ Rm×n where d < m

It turns out that this representation of H by H̄1 has a natural
optimality property as proved below
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Energy in H̄2 ∈ R (m−d)×n

From the definition of the Frobenius norm,it follows that

||H̄||2F = ||H̄1||2F + ||H̄2||2F (51)

From (50):

||H2||2F = tr(H̄2H̄2
T

)

= tr(Λ
1/2
2 vT2 v2Λ

1/2
2 )

= tr(Λ2) =
n∑

i=d+1

λi (52)
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Optimality of H̄1

In the light of the ordering in (15), the right hand side of
(52) is the sum of the least (n-d) eigenvalues of the (smaller)
Grammian HTH ∈ Rn×n

Hence, H̄1 enjoys the inherent optimality property of ”optimal
reduced dimensional representation of H”
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