

MODULE 1.1

Spectral decomposition of a real symmetric matrix

by
S.Lakshmivarahan
School of Computer Science
University of Oklahoma
Norman, OK-73019, USA
varahan@ou.edu

Eigenvalue and eigenvector pair of a matrix

- Let $A \in R^{n \times n}$ be a real matrix of order n
- If there exist a scalar, λ (real/complex) and a vector, v (real/complex) such that

$$Av = \lambda v \quad (1)$$

then λ is the eigenvalue and v is the corresponding eigenvector of A

- The pair (λ, v) satisfying (1) is called an eigenpair of A
- The set of all eigenvalues of A is called the spectrum of A

Invariant subspace of A

- Let $S_k = \{v_1, v_2, \dots, v_k\}$ be a set of linearly independent vectors in R^n
- $SPAN(S_k)$ denotes the set of all linear combinations of the vectors in S_k
- $SPAN(S_k)$ is a K-dimensional subspace of R^n
- If $AX \in SPAN(S_k)$ for any $X \in SPAN(S_k)$, then S_k is said to be A-invariant
- From (1), since $Av \in SPAN(v)$, every eigenvector defines an invariant subspace of dimension 1.

- Rewrite(1) as a linear homogeneous system:

$$(A - \lambda I)v = 0 \quad (2)$$

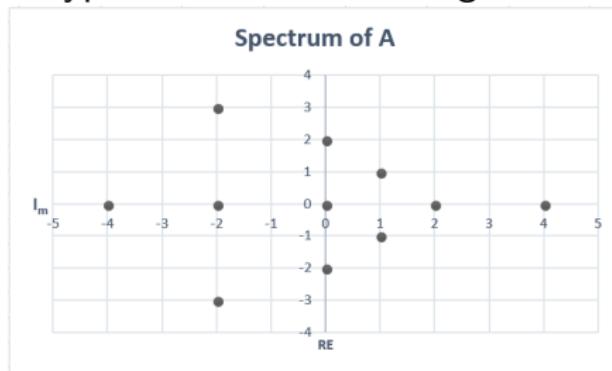
- Equation (2) has a non-null solution, exactly when $(A - \lambda I)$ is singular, that is

$$p(\lambda) = |A - \lambda I| = 0 \quad (3)$$

- The n eigenvalues of A are given by the n roots of the characteristic polynomial, $p(\lambda)$ of A

Distribution of eigenvalues of A

- Since A is real, the coefficients of $p(\lambda)$ are also real
- An n^{th} degree polynomial of degree n has n roots
- The roots are real or complex and the complex roots occur in conjugate pairs
- A typical distribution of eigenvalues



Eigenpairs of a real symmetric matrix

- Let $A \in R^{n \times n}$ and $A^T = A$, that is, A is symmetric
- SM1: The eigenvalues of a real symmetric matrix are real
- SM2: Eigenvectors corresponding to distinct eigenvalues are orthogonal
- SM3: If λ as a root of $p(\lambda) = 0$ in (3) is of (algebraic) multiplicity $1 \leq k \leq n$, then there exists a set of k mutually orthogonal vectors $v_1, v_2, v_3, \dots, v_k$ such that (λ, v_i) is an eigenpair of A for $1 \leq i \leq k$, that is, k is also the geometric multiplicity which is the dimension of the invariant subspace spanned by $\{v_1, v_2, \dots, v_k\}$ where $Av_i = \lambda v_i$ for $1 \leq i \leq k$

Matrix of eigenvalues and eigenvectors

- Let (λ_i, v_i) such that

$$Av_i = \lambda_i v_i \quad (4)$$

- Define

$$V = [v_1, v_2, \dots, v_n] \in R^{n \times n}$$

$$\Lambda = \text{Diag}[\lambda_1, \lambda_2, \dots, \lambda_n] \in R^{n \times n}$$

- Then (4) becomes:

$$AV = V\Lambda \quad (5)$$

- The eigenvectors are mutually orthogonal (see appendix)

$$v_i^T v_j \neq 0 \quad \text{for} \quad i = j$$

$$= 0 \quad \text{otherwise}$$

Orthonormality of eigenvectors

- Since $Av = \lambda v \implies A(\alpha v) = \lambda(\alpha v)$ for any α , non-zero constant, we need to only consider unit vector for eigenvectors.
- Consequently, assume that the vectors v_i in (4) are orthonormal:

$$\begin{aligned} v_i^T v_j &= 1 && \text{if } i = j \\ &= 0 && \text{otherwise} \end{aligned} \tag{6}$$

v-orthogonal matrix

- Hence, V is an orthogonal matrix, that is, using (6):

$$V^T V = \begin{bmatrix} v_1^T \\ v_2^T \\ v_3^T \\ \vdots \\ v_n^T \end{bmatrix} [v_1, v_2, v_3, \dots, v_n]$$

$$\begin{aligned} &= \begin{bmatrix} v_1^T v_1 & v_1^T v_2 & \dots & v_1^T v_n \\ v_2^T v_1 & v_2^T v_2 & \dots & v_2^T v_n \\ v_3^T v_1 & v_3^T v_2 & \dots & v_3^T v_n \\ \vdots & & & \\ v_n^T v_1 & v_n^T v_2 & \dots & v_n^T v_n \end{bmatrix} \\ &= I_n = VV^T \end{aligned} \tag{7}$$

- Multiplying both sides of (5) by V^T and using (7), we obtain

$$A = AVV^T = V\Lambda V^T \quad (8)$$

- This multiplicative decomposition in (8) is called the eigen decomposition of A

Eigen decomposition continued

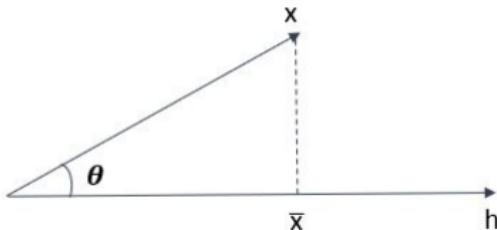
- Expanding V and Λ in (8): $A =$

$$\begin{bmatrix} v_1, v_2, v_3, \dots, v_n \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix} \begin{bmatrix} v_1^T \\ v_2^T \\ \vdots \\ v_n^T \end{bmatrix}$$
$$= \sum_{i=1}^n \lambda_i V_i V_i^T \quad (9)$$

- Since $V_i V_i^T$ is a rank-1 (outer product) matrix, (9) expresses A as a sum of n linearly independent rank-1 matrices

A digression

- Consider:



- Let $\hat{h} = \frac{h}{\|h\|}$ be the unit vector along h
- Orthogonal projection, \bar{x} of x along h is given by

$$\bar{x} = (x^T \hat{h}) \hat{h} = (\hat{h}^T x) \hat{h} = \hat{h} (\hat{h}^T x) = (\hat{h} \hat{h}^T) x \quad (10)$$

- The rank-1 matrix

$$P_h = (\hat{h} \hat{h}^T) \quad (11)$$

is called an orthogonal projection matrix and (10) becomes:

$$\bar{x} = P_h x$$

- Consequently, the rank-1 matrix $v_i v_i^T$ in (9) is an orthogonal projection matrix along v_i
- That is, (9) expresses A as a linear combination of orthogonal projection matrices

A-symmetric and positive definite (SPD)

- In this case, the eigenvalues of A are all real and positive
- That is, we can express

$$\Lambda = \Lambda^{\frac{1}{2}} \Lambda^{\frac{1}{2}} \quad (12)$$

where

$$\Lambda^{\frac{1}{2}} = \text{Diag}(\lambda_1^{\frac{1}{2}}, \lambda_2^{\frac{1}{2}}, \dots, \lambda_n^{\frac{1}{2}})$$

- $A = V\Lambda V^T = V\Lambda^{\frac{1}{2}} \Lambda^{\frac{1}{2}} V^T$
 $= (V\Lambda^{\frac{1}{2}})(V\Lambda^{\frac{1}{2}})^T = \bar{V}\bar{V}^T \quad (13)$

is the another form of the eigen decomposition for A

Why SPD matrices?

- In multivariate statistical analysis, SPD matrices arise naturally as covariance matrices
- In fact, the many well known methods in multivariate statistical analysis such as

- Principal Component Analysis (PCA)
- Singular Value Decomposition (SVD)
- Cononical Correlation (CC)

are based on the spectral or eigen decomposition of SPD matrices

- The goal of this appendix is to provide a proof of various properties of real symmetric matrices used in the development of this module
- The final result is to prove that every real symmetric matrix is diagonalizable using orthogonal transformation

Existence of eigenvalues and eigenvectors

- Let A be a real symmetric matrix of order $n \geq 2$
- The characteristic polynomial equation

$$p(\lambda) = |A - \lambda I| = 0 \quad (14)$$

of degree n must have at least one solution, say, α

- Then, there is atleast one real eigenvector that lies in the null space of $(A - \lambda I)$ or the kernel of $(A - \lambda I)$

A factorization of $p(\lambda)$

- In general, the monic polynomial can be expressed as

$$p(\lambda) = \prod_{i=1}^k (\lambda - \lambda_i)^{n_i} \quad (15)$$

where n_i is the algebraic multiplicity of λ_i and $(n_1 + n_2 + \dots + n_k) = n$

- The number of distinct eigenvectors m_i corresponding to a given eigenvalue λ_i is called the geometric multiplicity
- In general, $1 \leq m_i \leq n_i$, when A is symmetric, $m_i = n_i$ for $1 \leq i \leq k$

Claim 1: Eigenvalues of a real symmetric matrix are real

- Let (λ, v) be an eigenpair of A . That is

$$Av = v\lambda \quad (16)$$

- Taking complex conjugates of both sides:

$$A\bar{v} = \bar{v}\bar{\lambda} \quad (17)$$

- Multiplying both sides of (16) by \bar{v}^T on the left and that of (17) by v^T on the left and subtracting

$$0 = \bar{v}^T A v - v^T A \bar{v} = \lambda \bar{v}^T v - \bar{\lambda} v^T \bar{v} = v^T \bar{v}(\lambda - \bar{\lambda}) \quad (18)$$

- Since $v^T \bar{v} > 0$, $\implies \lambda = \bar{\lambda}$ and hence the claim

Claim 2: Eigenvectors corresponding to different eigenvalues of a real symmetric matrix are orthogonal

- Let (λ, v) and (μ, u) be two eigenpairs of a symmetric matrix A and let $\lambda \neq \mu$

-

$$\text{Then } Av = \lambda v \quad \text{and} \quad Au = \mu u \quad (19)$$

- Multiplying both sides of the first equation on the left by u^T and that of the second by v^T and subtracting:

$$0 = u^T Av - v^T Au = \lambda u^T v - \mu v^T u = (\lambda - \mu) u^T v \quad (20)$$

- Since $\lambda \neq \mu$, it is immediate that $u^T v = 0$ and the claim follows

- Let $D \subset R^n$ denote an A-invariant subspace of A. That is, $Av \in D$ when $v \in D$
- Let D^\perp denote the subspace of R^n that is orthogonal to D. That is $u^T v = 0$ whenever $u \in D$ and $v \in D^\perp$

Claim 3: If $D \subseteq \mathbb{R}^n$ is A -invariant, then so is D^\perp

- For any $u, v \in \mathbb{R}^n$

$$v^T A u = (Av)^T u \quad (21)$$

- If $u \in D$, then $Au \in D$. If $v \in D^\perp$, then $v^T A u = 0$
- From $(Av)^T u = 0$, it follows that $Av \in D^\perp$, and the claim is true.

Claim 4: Every (non-null) A-invariant subspace D of A contains a real eigenvector of A

- Let k be the dimension of D . Then there exists a $n \times k$ matrix B whose columns constitute an orthogonal basis for D .
- Since D is A -invariant, it is immediate that

$$AB = BE \tag{22}$$

for some $E \in R^{k \times k}$

- Then,

$$B^T AB = B^T BE = E \tag{23}$$

where E is a real symmetric matrix

Proof of claim 4 (Continues)

- Since E is real and symmetric, there exists atleast one eigenpair (λ, x) for E : $Ex = \lambda x$ where $x \in R^k$
- Then $(AB)x = A(Bx) = (BE)x = B(Ex) = \lambda(Bx)$
- Since $x \neq 0$ and the columns of B are orthogonal and hence linearly independent, it follows that $Bx \neq 0$
- Hence, Bx is an eigenvector of A contained in D

Claim 5: The set of all n eigenvectors of a real symmetric matrix $A \in R^{n \times n}$ form an orthogonal basis for R^n

- Recall that every real symmetric matrix A is endowed with at least one eigen pair
- Hence, for some $m \geq 1$, let $\{v_1, v_2, \dots, v_m\}$ be the (orthonormal) eigenvector basis for a subspace D of R^n
- Clearly, D and D^\perp are A -invariant. Hence, there is a vector $v_{m+1} \in D^\perp$ such that $\{v_1, v_2, \dots, v_{m+1}\}$ are the eigenvectors of A .
- Starting with $m=1$ and using this inductive argument, we obtain an orthonormal basis for R^n which are eigenvectors of A

Claim 6: Every real symmetric matrix A is diagonalizable

- Given A , let $v = [v_1, v_2, \dots, v_n] \in R^{n \times n}$ be the matrix of eigenvectors of A , that is $Av_i = v_i\lambda_i$ and $\Lambda = Diag(\lambda_1, \lambda_2, \dots, \lambda_n) \in R^{n \times n}$
- Then $AV = V\Lambda$ and $V^T V = VV^T = I$
- Hence, $V^T AV = \Lambda$

- Appendix follows the developments in Chapter 8 of C. Godsil and G. Royle (2001) Algebraic Graph Theory, Springer Verlag
- G.Golub and C. Van Loan (1989) Matrix Computations, Johns Hopkins University Press contains a wealth of information on computing the eigen pairs of real matrices

MODULE 1.2

Singular Value Decomposition (SVD)

by
S.Lakshmivarahan
School of Computer Science
University of Oklahoma
Norman, OK-73019, USA
varahan@ou.edu

What is SVD?

- This module 1.1 contains results relating to the spectral decomposition of square, real symmetric matrices
- This module 1.2 contains analogous results for rectangular matrices, $H \in R^{m \times n}$ called SVD of H
- SVD rests on the spectral decomposition of symmetric matrices $H^T H$ and HH^T are called the Gramian of H

Gramians of H

- Given $H \in R^{m \times n}$, define two related square, symmetric matrices: $H^T H \in R^{n \times n}$ and $HH^T \in R^{m \times m}$ called the Gramians of H
- Assume that H is of full rank, that is,

$$RANK(H) = \min(n, m) \quad (1)$$

- From

$$RANK(H^T H) = RANK(H) = RANK(HH^T) \quad (2)$$

it follows that

$$RANK(H^T H) = RANK(HH^T) = \min(n, m) \quad (3)$$

- Hence, when $m > n$, $H^T H \in R^{n \times n}$ is non singular and in fact, is SPD. But HH^T is singular and non-negative definite

Spectral decomposition of $H^T H \in R^{n \times n}$ when $m > n$

- Since the smaller Gramian $H^T H$ is an SPD matrix, there exists eigenpairs (λ_i, v_i) $1 \leq i \leq n$ such that

$$(H^T H)V = V\Lambda \quad (4)$$

where $V = [v_1, v_2, \dots, v_n] \in R^{n \times n}$ and

$\Lambda = \text{Diag}(\lambda_1, \lambda_2, \dots, \lambda_n) \in R^{n \times n}$ and $V^T V = VV^T = I_n$

- Also, assume that

$$\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n > 0 \quad (5)$$

- Hence,

$$V^T (H^T H) V = \Lambda \quad \text{and} \quad H^T H = V \Lambda V^T \quad (6)$$

- Define

$$u_i = \frac{1}{\sqrt{\lambda_i}} Hv_i \in R^m, 1 \leq i \leq n \quad (7)$$

- Then

$$(H^T H)u_i = \frac{1}{\sqrt{\lambda_i}} H(H^T H)v_i = \frac{\lambda_i}{\sqrt{\lambda_i}} Hv_i = \lambda_i u_i \quad (8)$$

- That is, if (λ_i, v_i) is an eigenpair of $(H^T H)$, then (λ_i, u_i) is an eigenpair of HH^T with u_i given by (7)

- Let $U = [u_1, u_2, \dots, u_n] \in R^{m \times n}$. Then (7) is equivalent to

$$(HH^T)U = U\Lambda \quad (9)$$

- The n non-zero eigenvalues of (HH^T) are the same as the n eigenvalues of $H^T H$. The rest of the $(m-n)$ eigenvalues of HH^T are zero
- The eigenvectors u_i corresponding to the n non-zero eigenvalues of (HH^T) are related to those of $(H^T H)$ through the linear transformation in (7)

- Relation (7) becomes

$$Hv_i = u_i \sqrt{\lambda_i}, \quad 1 \leq i \leq n \quad (10)$$

- Define

$$U = [u_1, u_2, u_3, \dots, u_n] \in R^{m \times n}$$

$$\Lambda^{\frac{1}{2}} = \text{Diag}(\lambda_1^{\frac{1}{2}}, \lambda_2^{\frac{1}{2}}, \dots, \lambda_n^{\frac{1}{2}}) \in R^{n \times n}$$

- The n relations in (10) can be written succinctly as

$$HV = U\Lambda^{\frac{1}{2}} \quad \text{or} \quad H = U\Lambda^{\frac{1}{2}} V^T \quad (11)$$

called the SVD of H

Has a sum of rank-1 matrices

- Equation(11) on expanding:

$$H = [u_1, u_2, u_3, \dots, u_n] \begin{bmatrix} \lambda_1^{\frac{1}{2}} & 0 & \dots & 0 \\ 0 & \lambda_2^{\frac{1}{2}} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n^{\frac{1}{2}} \end{bmatrix} \begin{bmatrix} v_1^T \\ v_2^T \\ \vdots \\ v_n^T \end{bmatrix} \quad (12)$$

$$= \sum_{i=1}^n \lambda_i^{\frac{1}{2}} u_i v_i^T$$

- λ_i 's are the eigenvalues of $(H^T H)$ and are known as the singular values of H
- Hence the name SVD

A dual pair for SVD

- Multiplying both sides of (7) on the left by H^T and using (7):

$$H^T u_i = \frac{1}{\sqrt{\lambda_i}} (H^T H) v_i = \frac{1}{\sqrt{\lambda_i}} \lambda_i v_i = \sqrt{\lambda_i} v_i$$

- That is,

$$\begin{aligned} v_i &= \frac{1}{\sqrt{\lambda_i}} H^T u_i \text{ and} \\ u_i &= \frac{1}{\sqrt{\lambda_i}} H v_i \end{aligned} \tag{13}$$

are the two defining relations for SVD of H

A Generalization

- Let $\lambda \neq 0, \eta \neq 0$ be such that (λ, η) is an eigenpair of $H^T H$. That is

$$(H^T H)\eta = \lambda\eta \quad (14)$$

- From

$$\lambda(H\eta) = H(H^T H)\eta = (HH^T)(H\eta) \quad (15)$$

it follows that $(\lambda, H\eta)$ is an eigenpair of HH^T

- If $H\eta = 0$, then $(H^T H)\eta = \lambda\eta = 0$ which implies either $\lambda = 0$ or $\eta = 0$ or both zero, which is a contradiction.
- Hence $(\lambda, H\eta)$ is an eigenpair of (HH^T) if (λ, η) is that of $H^T H$

Algebraic and geometric multiplicities of eigenvalues of $H^T H$

- Let λ be an eigenvalue of $(H^T H)$ of algebraic multiplicity, say, m .
- Then, recall that there exists a (non- unique) set of m orthonormal eigenvectors $\{\eta_1, \eta_2, \eta_3, \dots, \eta_m\}$ such that

$$(H^T H)\eta_i = \lambda\eta_i \quad \text{for } 1 \leq i \leq m \quad (16)$$

Algebraic and geometric multiplicities of eigenvalues of HH^T

- Let η_1 and η_2 be two orthogonal eigenvectors of $H^T H$ for the eigenvalue λ of algebraic multiplicity $m = 2$
- Then, $H\eta_1$ and $H\eta_2$ as eigenvectors of (HH^T) are orthogonal
- For

$$(H\eta_1)^T (H\eta_2) = \eta_1^T (H^T H) \eta_2 = \lambda \eta_1^T \eta_2 = 0 \quad (17)$$

One to one correspondence

- In view of (15) and (17), the following claim holds:
- Claim: Let H be an $m \times n$ matrix of full rank.

Then

- (1) The Gramians $H^T H$ and HH^T share the same set of non-zero eigenvalues, and
- (2) λ is an eigenvalue of multiplicity m of $(H^T H)$ with an orthogonal set of eigenvectors $\{\eta_1, \eta_2, \eta_3, \dots, \eta_m\}$, then λ is also an eigenvalue of multiplicity m of (HH^T) with an orthogonal set of eigenvectors $\{H\eta_1, H\eta_2, \dots, H\eta_m\}$

- For completeness, we consider the case when $n > m$
- Since (HH^T) is SPD, there exist (λ_i, u_i) , $1 \leq i \leq n$ that are eigenpairs of HH^T
- That is,

$$\begin{aligned}(HH^T u_i) &= \lambda_i u_i, \quad u_i \in R^n \\ \text{or} \quad (HH^T)U &= U\Lambda\end{aligned}\tag{18}$$

where $U = [u_1, u_2, u_3, \dots, u_n]$, $U^T U = UU^T = I_m$

$\Lambda = \text{Diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$

where

$$\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n\tag{19}$$

- Define

$$v_i = \frac{1}{\sqrt{\lambda_i}} H^T u_i \in R^n \quad (20)$$

- Then

$$(H^T H)v_i = \frac{1}{\sqrt{\lambda_i}} H^T (H H^T) u_i = \frac{\lambda_i}{\sqrt{\lambda_i}} H^T u_i = \lambda_i v_i \quad (21)$$

- That is, (λ_i, v_i) is an eigenpair of $H^T H$

Eigen decomposition of $H^T H$

- Define

$$V = [v_1, v_2, v_3, \dots, v_n] \in R^{n \times n}$$

- Then (21) becomes

$$(H^T H)V = V\Lambda, \quad vv^T = I_n \quad (22)$$

- Also the m non-zero eigenvalues of HH^T are those of $H^T H$ and the rest of $(n-m)$ eigenvalues of $H^T H$ are zero.

- Multiplying both sides of (20) on the left by H and using (18):

$$Hv_i = \frac{1}{\sqrt{\lambda_i}}(HH^T)u_i = \sqrt{\lambda_i}u_i$$
$$or \quad u_i = \frac{1}{\sqrt{\lambda_i}}Hv_i \quad (23)$$

which is the dual of (20)

A note on our notation

- In this and in all Modules to follow, we use the following convention: $H \in R^{m \times n}$
- Case 1: $m > n$ and $H^T H$ is SPD

$$\begin{aligned}(H^T H)V &= V\Lambda, & V^T V &= VV^T = I_n \\ (HH^T)U &= U\Lambda, & U^T U &= I_n, & U &\in R^{m \times n}\end{aligned}\tag{24}$$

- Case 2: $n > m$ and HH^T is SPD

$$\begin{aligned}(HH^T)U &= U\Lambda, & U^T U &= UU^T = I_m \\ (H^T H)V &= V\Lambda, & V^T V &= I_m, & V &\in R^{n \times m}\end{aligned}\tag{25}$$

A dual characterization of SVD

- Case 1: $m > n$

$$\begin{aligned} u_i &= \frac{1}{\sqrt{\lambda_i}} Hv_i \\ v_i &= \frac{1}{\sqrt{\lambda_i}} H^T v_i \end{aligned} \tag{26}$$

- Case 2: $n > m$

$$\begin{aligned} v_i &= \frac{1}{\sqrt{\lambda_i}} H^T u_i \\ u_i &= \frac{1}{\sqrt{\lambda_i}} Hv_i \end{aligned} \tag{27}$$

MODULE 1.3

Orthogonal Projections in R^m

by
S.Lakshmivarahan
School of Computer Science
University of Oklahoma
Norman, OK-73019, USA
varahan@ou.edu

Inner product and norm in R^m

- Let $x, y \in R^m$. The inner product is defined as

$$\langle x, y \rangle = x^T y = \sum_{i=1}^n x_i y_i = y^T x = \langle y, x \rangle \quad (1)$$

- Norm of a vector x is given by

$$\|x\| = \langle x, x \rangle^{\frac{1}{2}} = \left(\sum_{i=1}^m x_i^2 \right)^{\frac{1}{2}} \quad (2)$$

- Cauchy- Schwartz inequality: From

$$\langle x, y \rangle = \|x\| \|y\| \cos(\theta) \quad (3)$$

it follows that

$$|\cos \theta| = \frac{|\langle x, y \rangle|}{\|x\| \|y\|} \leq 1 \quad (4)$$

Projection of y along x - a geometric view

- Let $\hat{x} = \frac{x}{\|x\|}$ be the unit vector,

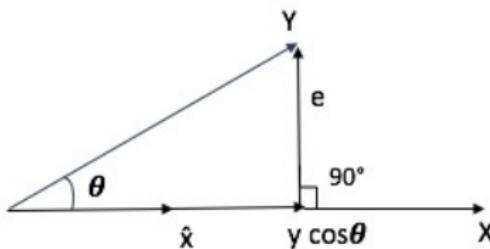
$$\|\hat{x}\| = 1 \quad (5)$$

-

$$\langle y, \hat{x} \rangle = y^T \hat{x} = \|y\| \cos(\theta) \quad (6)$$

which is the component of y in the direction \hat{x} .

- The vector $(y \cos \theta) \hat{x}$ is called the projection of y along \hat{x}



Orthogonality of this projection

- Let $e = y - (ycos\theta)\hat{x}$ be the error in the projection
- Then,

$$\langle e, \hat{x} \rangle = e^T \hat{x} = y^T \hat{x} - (ycos\theta) \hat{x}^T \hat{x} = 0 \quad (7)$$

- Hence the name orthogonal projection

Analytical expression for orthogonal projection

- Let $h \in R^m$ and $x \in R^m$ be any other vector
- Any vector along h can be expressed as a multiple $h\alpha$ for some real α
- Problem: Given x and h , find $\alpha \in R$ that minimizes the distance between x and $h\alpha$
- That is, find α that minimizes

$$\begin{aligned} Q(\alpha) &= \|x - h\alpha\|^2 = (x - h\alpha)^T(x - h\alpha) \\ &= x^T x - 2x^T h\alpha + \alpha^2 h^T h \end{aligned} \tag{8}$$

- Minimizer α^* is obtained by solving

$$0 = \frac{dQ}{d\alpha} = -2h^T x + 2\alpha h^T h \quad (9)$$

- That is,

$$\alpha^* = (h^T h)^{-1} h^T x = h^+ x \quad (10)$$

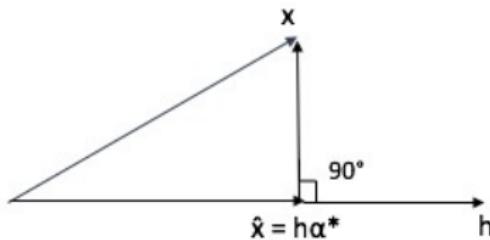
where

$$h^+ = (h^T h)^{-1} h^T \quad (11)$$

is called the generalized inverse of h

Expression for the projection

- The orthogonal projection of x along h is given by



$$\hat{x} = h\alpha^* = hh^+x = h(h^T h)^{-1}h^T x = P_h x \quad (12)$$

where

$$P_h = hh^+ = h(h^T h)^{-1}h^T \quad (13)$$

is called the orthogonal projection matrix

Orthogonality of projection

- Let

$$e = x - \hat{x} = (I - P_h)x \quad (14)$$

be the error in the projection

- Clearly:

$$h^T e = (h^T - h^T P_h)x = 0 \quad (15)$$

since $h^T P_h = (h^T h)(h^T h)^{-1} h^T = h^T$

- Hence, P_h is called the orthogonal projection operator

Properties of P_h

- Symmetry: $P_h^T = P_h$
- Idempotent: $P_h^2 = P_h$
- P_h is a rank one matrix
- $\det(P_h) = 0$, that is, P_h is singular
- 1 is the only non-zero eigenvalue of P_h
- P_h is not an orthogonal matrix: $P_h^T \neq P_h^{-1}$ since P_h^{-1} is not defined

A Generalization

- Let $H \in R^{m \times n}$ with $m > n$ and $\text{Rank}(H) = n$
- Then, $(H^T H) \in R^{n \times n}$ is SPD
- Let $x \in R^m$
- Problem: Find an $\alpha \in R^n$ such that $\hat{x} = H\alpha \in R$ and

$$\begin{aligned} Q(\alpha) &= (x - H\alpha)^T (x - H\alpha) = \|x - H\alpha\|^2 \\ &= x^T x - 2x^T H\alpha + \alpha^T (H^T H)\alpha \end{aligned} \tag{16}$$

is a minimum

- From

$$\nabla_{\alpha} Q(\alpha) = -2H^T x + 2(H^T H)\alpha = 0 \quad (17)$$

it follows that

$$\alpha^* = (H^T H)^{-1} H^T x = H^+ x \quad (18)$$

minimizes $Q(\alpha)$ since

$$\nabla_{\alpha}^2 Q(\alpha) = (H^T H) \quad \text{is} \quad SPD \quad (19)$$

- $H^+ = (H^T H)^{-1} H^T \in R^{n \times m}$ is called the generalized inverse of H

Optimal projection

- Then

$$\hat{x} = H\alpha^* = H(H^T H)^{-1} H^T x = H H^+ x = P_H x \quad (20)$$

where

$$P_H = H(H^T H)^{-1} H^T \in R^{m \times m} \quad (21)$$

is the projection operator in R^m onto the n-dimensional subspace spanned by the columns of H

-

$$e = x - \hat{x} = (I - P_H)x \quad (22)$$

is the error in this projection

- Verify that

$$e^T H = 0 \quad (23)$$

and hence the name orthogonal projection

Properties of P_H

- Symmetry: $P_H^T = P_H$
- Idempotent: $P_H^2 = P_H$
- $RANK(P_H) = n$ since that of H is n
- P_H is singular
- There are exactly n non-zero eigenvalues of P_H
- P_H is not an orthogonal matrix

- Chapters 5 and 6 in J. Lewis, S. Lakshmivarahan and S.K. Dhall (2006) Dynamic Data Assimilation, Cambridge University Press.

1) Let $x \in R^m$ and $h = (1, 1, \dots, 1)^T \in R^m$ and $h = (1, 1, 1, \dots, 1)^T \in R^m$ be a vector all of whose components are 1. Compute an expression for α that minimizes the distance between x and $h\alpha$.

2) Let $H = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{bmatrix}$

- Compute $H^T H$, HH^T , H^+ , P_H , HH^+ , H^+H , HH^+H , H^+HH^+
- Compute the eigenvalues of P_H

3) Verify the following:

- a) $HH^+H = H$
- b) $H^+HH^+ = H^+$
- c) $(H^+H)^T = H^+H$
- d) $(HH^+)^T = HH^+$

Note: Any H^+ satisfying the properties (a)-(d) is called the Moore-Penrose inverse.

4) Given P_H , define $P_H^\perp = I - P_H$

- Verify that P_H^\perp is symmetric and idempotent
- For the H in problem 2, Compute P_H^\perp and its rank

MODULE 1.5

Second-order properties of random variables and vectors

by
S.Lakshmivarahan
School of Computer Science
University of Oklahoma
Norman, OK-73019, USA
varahan@ou.edu

- Let (Ω, Γ, P) be a probability space
- $L_2 = L_2(\Omega, \Gamma, P)$ denote the family of square integrable random variables
- Say that $x(\omega) \in L_2$ if

$$\int_{\Omega} |x(\omega)|^2 dP(\omega) < \infty \quad (1)$$

- L_2 is a real vector space-closed under addition and multiplication by a real constant

Second-order properties of random variables

- Let $x \in L_2$, with mean $\mu_x = E[x] < \infty$
- Variance of x : $\text{var}(x) = \sigma_x^2 = E[(x - \mu)^2] < \infty$
- Covariance between $x, y \in L_2$:

$$\text{cov}(x, y) = E[(x - \mu_x)(y - \mu_y)]$$

- x, y are uncorrelated if $\text{cov}(x, y) = 0$
- Correlation between $x, y \in L_2$:

$$\text{corr}(x, y) = \frac{\text{cov}(x, y)}{\sigma_x \sigma_y}$$

- $|\text{corr}(x, y)| \leq 1$

A Geometric view of random variables in L_2

- Let $x, y \in L_2$
- Inner product of x and y : $\langle x, y \rangle = E(xy)$
- Norm of x : $\|x\| = \langle x, x \rangle^{\frac{1}{2}} = [E(x^2)]^{\frac{1}{2}}$
- Distance between x and y :

$$dist(x, y) = \|x - y\| = [E(x - y)^2]^{\frac{1}{2}}$$

- x and y are orthogonal if $\langle x, y \rangle = E(x, y) = 0$
- For mean zero random variables: orthogonality implies uncorrelated

Orthogonal projection in L_2

- Let x be a random variable defined on (Ω, Γ, P)
- Let y be a random variable on a subspace (Ω, Y, P) where Y is a sub σ -field of Γ
- Orthogonal projection theorem: For $x \in L_2(\Omega, \Gamma, P)$ there exists an unique $\hat{x} \in L_2(\Omega, Y, P)$ such that
 - (a) $\|x - \hat{x}\| = \min\{\|x - y\| : y \in L_2(\Omega, Y, P)\}$
 - (b) $\langle x - \hat{x}, y \rangle = 0$ for all $y \in L_2(\Omega, Y, P)$

Random vectors in L_2

- Let $x \in R^m$ be a random vector with $x = (x_1, x_2, x_3, \dots, x_m)$
- Say $x \in L_2$ if each component $x_i \in L_2$
- Mean of $x = \mu_x = E(x) = (\mu_1, \mu_2, \mu_3, \dots, \mu_m)^T$ where $\mu_i = E(x_i)$
- $cov(x_i, x_j) = \sigma_{ij} = E[(x_i - \mu_i)(x_j - \mu_j)]$
- $var(x_i) = \sigma_i^2 = E[(x_i - \mu_i)^2]$
- $cov(x) = E[(x - \mu)(x - \mu)^T] = [\sigma_{ij}] = \Sigma \in R^{m \times m}$
- $var(x) = \sum_{i=1}^n var(x_i)$
 $= E[(x - \mu)^T(x - \mu)] = \sum_{i=1}^n \sigma_i^2 = tr(\Sigma)$
where $tr(A)$ is called the trace of A.

A geometric view of random vectors in L_2

- Let $x, y \in R^m$ be two random vectors in L_2
- Inner product: $\langle x, y \rangle = E[x^T y] = \sum_{i=1}^m E(x_i y_i)$
- Norm: $\|x\|^2 = \langle x, x \rangle = E[x^T x] = \sum_{i=1}^m E(x_i)^2$
- Distance: $\|x - y\|^2 = \langle x - y, x - y \rangle = E[(x - y)^T (x - y)] = \sum_{i=1}^m E(x_i - y_i)^2$
- Orthogonal: x and y are orthogonal if $\langle x, y \rangle = 0$
- For mean zero random vectors orthogonality implies uncorrelated

- The statement of orthogonal projection theorem carries over verbatim if we replace random variables by random vectors
- This projection theorem is the basis for generating optimal prediction, optimal estimation in Time Series Analysis, Spatial and Spatio-temporal statistics.
- It also plays a key role in the Principal Component Analysis (PCA) and in the development of Empirical orthogonal functions (EOF)

Centering

- Let $x \in R^m$ be a random vector with mean $\mu \in R^m$ and $cov(x) = \Sigma \in R^{m \times m}$
- Then, $y = x - \mu$ is called the centered version of x
- Clearly: $E(y) = 0$ and $cov(y) = \Sigma$

- Let $x \in R^m$ be a random vector with mean $\mu \in R^m$ and $cov(x) = \Sigma$ with $y = x - \mu$
- $z_i = \frac{x_i - \mu_i}{\sigma_i} = \frac{y_i}{\sigma_i}$ is the normalized version of y_i
- $Mean(z_i) = 0$, $Var(z_i) = 1$
- $z = (z_1, z_2, \dots, z_m)^T$ is the centered and normalized version of x

Normalization (continued)

- Let $D = \text{Diag}(\sigma_1^2, \sigma_2^2, \dots, \sigma_m^2)$ - the diagonal matrix with the diagonal of Σ
- Define square root, $D^{1/2} : D = D^{1/2}D^{1/2}$ where $D^{1/2} = \text{Diag}(\sigma_1, \sigma_2, \dots, \sigma_m)$
- Define $z = D^{-1/2}Y = D^{-1/2}(x - \mu)$
- $\text{cov}(z) = E(zz^T) = D^{-1/2}E[(x - \mu)(x - \mu)^T]D^{-1/2}$
 $= D^{-1/2}\Sigma D^{-1/2} = R = \text{corr}(z)$
- Correlation matrix: $R = [R_{ij}]$ and $R_{ij} = \frac{\sigma_{ij}}{\sigma_i \sigma_j}$
- $|R_{ij}| \leq 1$

- Let $A \in R^{m \times m}$ and $b \in R^m$
- Define $\xi = Ax + b$
- Mean: $E(\xi) = A\mu + b$ where $\mu = E(x)$
- $$\begin{aligned} \text{cov}(\xi) &= E[(\xi - E(\xi))(\xi - E(\xi))^T] \\ &= E[(A(x - \mu))(A(x - \mu))^T] \\ &= AE[(x - \mu)(x - \mu)^T]A^T = A\Sigma A^T \end{aligned}$$
- Thus, if $x \sim N(m, \Sigma)$, $\xi \sim N(Am + b, A\Sigma A^T)$

A special linear transformation

- Let $x \in R^m$ with mean μ and $cov(x) = \Sigma$, SPD
- Define square root of Σ : $\Sigma = \Sigma^{1/2}\Sigma^{1/2}$
- let $\xi = \Sigma^{-1/2}(x - \mu)$
- Then $E(\xi) = 0$
- $cov(\xi) = E[(\Sigma^{-1/2}(x - \mu))(\Sigma^{-1/2}(x - \mu))^T]$
 $= \Sigma^{-1/2}E[(x - \mu)(x - \mu)^T]\Sigma^{-1/2}$
 $= \Sigma^{-1/2}\Sigma\Sigma^{-1/2} = I$
- That is: $var(\xi_i) = 1$ and $cov(\xi_i, \xi_j) = 0$ for $i \neq j$
- This is known as Whitening transformation

- Let $a \in R^m$ and $x \in R^m$ with mean μ and $\text{cov}(x)$
- Define $\eta = a^T x$, a real random variable
- $E(\eta) = a^T \mu$
- $$\begin{aligned}\text{var}(\eta) &= E[(a^T(x - \mu))^2] = E[(a^T(x - \mu))(a^T(x - \mu))] \\ &= E[a^T(x - \mu)(x - \mu)^T a^T] \\ &= a^T \Sigma a\end{aligned}$$
- Clearly, η is a non-degenerate random variable
(that is, $\text{var}(\eta) > 0$) for all $a \in R^n$, if and only if Σ is SPD

- M. Grigoriu (2002) Stochastic Calculus, Birkhauser, Basel contains a good introduction to basic Probability theory and L_2 spaces

- 1 Prove that $|R_{ij}| = \left| \frac{\sigma_{ij}}{\sigma_i \sigma_j} \right|$