MODULE 1.1
Spectral decomposition of a real symmetric matrix

by
S.Lakshmivarahan
School of Computer Science
University of Oklahoma
Norman, OK-73019, USA
varahan@ou.edu

S.Lakshmivarahan Module 1.1 1/27



Eigenvalue and eigenvector pair of a matrix

o Let A€ R"™" be a real matrix of order n

o If there exist a scalar, \(real/complex) and a vector,
v(real/complex) such that

Av = v (1)

then X is the eigenvalue and v is the corresponding
eigenvector of A

@ The pair (A, v) satisfying (1) is called an eigenpair of A

@ The set of all eigenvalues of A is called the spectrum of A
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Invariant subspace of A

o Let S = {v1, va,....., vk} be a set of linearly independent
vectors in R"

@ SPAN(Sk) denotes the set of all linear combinations of the
vectors in Sy

@ SPAN(S) is a K-dimensional subspace of R"

o If AX € SPAN(Sx) for any X € SPAN(Sk), then Sy is said to
be A-invariant

e From (1), since Av € SPAN(v), every eigenvector defines an
invariant subspace of dimension 1.
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Eigenvalues of A

@ Rewrite(1) as a linear homogeneous system:
(A= X)v=0 (2)

e Equation (2) has a non-null solution, exactly when (A — \/) is

singular, that is
p(A) =[A=Al[=0 (3)

@ The n eigenvalues of A are given by the n roots of the
characteristic polynomial, p(A) of A
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Distribution of eigenvalues of A

@ Since A is real, the coefficients of p(\) are also real

o An n'" degree polynomial of degree n has n roots

@ The roots are real or complex and the complex roots occur in
conjugate pairs

@ A typical distribution of eigenvalues

Spectrum of A
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Eigenpairs of a real symmetric matrix

o Let Ac R™"and AT = A, that is, A is symmetric
@ SM1: The eigenvalues of a real symmetric matrix are real

@ SM2: Eigenvectors corresponding to distinct eigenvalues are
orthogonal

@ SM3: If X as a root of p(\) =0 in (3) is of (algebraic)
multiplicity 1 < k < n, then there exists a set of k mutually
orthogonal vectors vi, va, v3, ..., v such that (A, v;) is an
eigenpair of A for 1 < < k, that is, k is also the geometric
multiplicity which is the dimension of the invariant subspace
spanned by {vi, va,.....vk} where Av; = Av; for 1 < < k
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Matrix of eigenvalues and eigenvectors

@ Let (\;, v;) such that
Av; = \jv;

Define

V = [Vl, Vo, .y Vn] e RN
A = Diag[M1, Ao, .o An] € R

@ Then (4) becomes:
AV = VA

The eigenvectors are mutually orthogonal (see appendix)

vivi#£0 for i=]j

=0 otherwise
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Orthonormality of eigenvectors

@ Since Av = \v. = A(av) = A av) for any «, non-zero
constant, we need to only consider unit vector for
eigenvectors.

e Consequently, assume that the vectors v; in (4) are
orthonormal:

-
Vi

vi=1 ifi=j

=0 otherwise
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v-orthogonal matrix

@ Hence, V is an orthogonal matrix, that is, using (6):

T T
Viv=1|% [vl,vz,V3,...,v,,]

\'
1

Vl V]_ VlT V2 e VlT Vn
V2 Vl V2T V2 e V2T Vn
— V3 Vi V3T Vo ... V3T Vn

N

T T T
_Vn ViV, Vo ...V, Vpy

=l,=wT (7)
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Spectral or eigen decomposition of a symmetric matrix

e Multiplying both sides of (5) by VT and using (7), we obtain
A=AWT = vAVT (8)

@ This multiplicative decomposition in (8) is called the eigen
decomposition of A
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Eigen decomposition continued

e Expanding V and Ain (8): A =

|:V17V2,V37"'avn] : : : :
0 0 ... A |v]
= aviviT (9)
i=1

o Since V;V.T is a rank-1 (outer product) matrix, (9) expresses
A as a sum of n linearly independent rank-1 matrices
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A digression

o Consider:

X

A

/
e

- g
o Let h= ﬁ be the unit vector along h
@ Orthogonal projection, X of x along h is given by
x=(xThyh=(h"x)h=h(h"x) = (hhT)x  (10)
@ The rank-1 matrix
Py, = (hhT) (11)
is called an orthogonal projection matrix and (10) becomes:
X = Ppx
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Eigen decomposition of A

o Consequently, the rank-1 matrix v;v;” in (9) is an orthogonal
projection matrix along v;

@ That is, (9) expresses A as a linear combination of orthogonal
projection matrices
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A-symmetric and positive definite (SPD)

@ In this case, the eigenvalues of A are all real and positive

@ That is, we can express
1 1
A= NA2A2 (12)
where
o A= VAVT = VAN VT

— (VAZ)(VAR)T = 70T (13)

is the another form of the eigen decomposition for A
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Why SPD matrices?

@ In multivariate statistical analysis, SPD matrices arise
naturally as covariance matrices
@ In fact, the many well known methods in multivariate
statistical analysis such as
o Principal Component Analysis (PCA)
o Singular Value Decomposition (SVD)
e Cononical Correlation (CC)
are based on the spectral or eigen decomposition of SPD
matrices
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APPENDIX

@ The goal of this appendix is to provide a proof of various
properties of real symmetric matrices used in the development
of this module

@ The final result is to prove that every real symmetric matrix is
diagonalizable using orthogonal transformation
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Existence of eigenvalues and eigenvectors

@ Let A be a real symmetric matrix of order n > 2

@ The characteristic polynomial equation
p(N) = |A— | =0 (14)

of degree n must have at least one solution, say, «

@ Then, there is atleast one real eigenvector that lies in the null
space of (A — Al) or the kernel of (A — A/)
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A factorization of p(\)

@ In general, the monic polynomial can be expressed as

k

P = [T =)™ (1)

i=1
where n; is the algebraic multiplicity of A; and
(m+nm+...4+n)=n

@ The number of distinct eigenvectors m; corresponding to a
given eigenvalue ); is called the geometric multiplicity

@ In general, 1 < m; < n;, when A is symmetric, m; = n; for
1<i<k
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Claim 1: Eigenvalues of a real symmetric matrix are real

@ Let (A, v) be an eigenpair of A. That is

Av = vA (16)
@ Taking complex conjugates of both sides:

AV = U\ (17)

e Multiplying both sides of (16) by 77 on the left and that of
(17) by v on the left and subtracting

@ Since vT¥>0, = ) = X and hence the claim
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Claim 2: Eigenvectors corresponding to different
eigenvalues of a real symmetric matrix are orthogonal

e Let (A, v) and (u, u) be two eigenpairs of a symmetric matrix
A and let A # p

Then Av=2MAv and Au=pu (19)

e Multiplying both sides of the first equation on the left by u”
and that of the second by v’ and subtracting:

O=uTAv—vTAu=X u"v—pvTu=\—pu"v (20)

@ Since A\ # y, it is immediate that u”v = 0 and the claim
follows
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A notation

@ Let D C R" denote an A-invariant subspace of A. That is,
Av € D whenve D

@ Let D+ denote the subspace of R" that is orthogonal to D.
That is u” v=0 whenever u € D and v € D+
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Claim 3: If D C R" is A-invariant, then so is D+

o Forany u,veR"
viAu = (Av)Tu (21)

o Ifue D, then Aue D. If v e DL, then vT Au=0

e From (Av)Tu — 0, it follows that Av € D1, and the claim is
true.
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Claim 4: Every (non-null) A-invariant subspace D of A
contains a real eigenvector of A

@ Let k be the dimension of D. Then there exists a n X k matrix
B whose columns constitute an orthogonal basis for D.

@ Since D is A-invariant, it is immediate that
AB = BE (22)

for some E € Rkxk

@ Then,
BTAB=B"BE =E (23)

where E is a real symmetric matrix
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Proof of claim 4 (Continues)

@ Since E is real and symmetric, there exists atleast one
eigenpair (A, x) for E: Ex = Ax where x € Rk

Then (AB)x = A(Bx) = (BE)x = B(Ex) = A(Bx)

Since x # 0 and the columns of B are orthogonal and hence
linearly independent, it follows that Bx # 0

Hence, Bx is an eigenvector A contained in D
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Claim 5: The set of all n eigenvectors of a real symmetric
matrix A € R"*" form an orthogonal basis for R"

@ Recall that every real symmetric matrix A is endowed with at
least one eigen pair

@ Hence, for some m > 1, let {v1, v2,..., vy} be the
(orthonormal) eigenvector basis for a subspace D of R"

o Clearly, D and Dt are A-invariant.Hence, there is a vector
Vms1 € Dt such that {vi,va,..., vmy1} are the eigenvectors
of A.

@ Starting with m=1 and using this inductive argument, we

obtain an orthonormal basis for R” which are eigenvectors of
A
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Claim 6: Every real symmetric matrix A is diagonalizable

e Given A, let v=[v1, va, ..., v,] € R™*" be the matrix of
eigenvectors of A, that is Av; = v;\; and
A = Diag(M1, A2, ...,Ap) € R™"

@ Then AV =VAand VTV =WwWT =

@ Hence, VTAV = A
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What is SVD?

@ This module 1.1 contains results relating to the spectral
decomposition of square, real symmetric matrices

@ This module 1.2 contains analogous results for rectangular
matrices, H € R™*" called SVD of H

@ SVD rests on the spectral decomposition of symmetric
matrices HT H and HHT are called the Gramian of H
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Gramians of H

e Given H € R™*"  define two related square, symmetric
matrices: HTH € R™" and HHT € R™*™ called the
Gramians of H

@ Assume that H is of full rank, that is,
RANK(H) = min(n, m) (1)
@ From
RANK(H"H) = RANK(H) = RANK(HHT™) (2)
it follows that
RANK(HTH) = RANK(HHT) = min(n, m) (3)

@ Hence, when m > n, HTH € R"™" is non singular and in
fact, is SPD. But HH is singular and non-negative definite
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Spectral decomposition of H'H € R™*" when m > n

@ Since the smaller Gramian HT H is an SPD matrix, there
exists eigenpairs (\;, v;) 1 < i < n such that

(HTH)V = VA (4)

where V = [v1, va,...,vy] € R™" and
A = Diag(A1,A2,...,A) €ER™"and VTV = WT =1,

@ Also, assume that
AM>X>..>A,>0 (5)
@ Hence,

VI(HTH)V =A and H'H=VAVT (6)
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Eigenpair of HHT € R™™ m > n

@ Define 1
Ui:ﬁHVieRm,lgign (7)
@ Then
(H H)u,- = 5\ H(H H)V,' = 3 HV,' = )\,’U,’ (8)

e That is, if (\;,v;) is an eigenpair of (HT H), then (\;, u;) is
an eigenpair of HHT with u; given by (7)
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Spectral decomposition of HHT € R™™ m > n

o Let U=[u1,up,...,up] € R™". Then (7) is equivalent to
(HHTYU = UN (9)

@ The n non-zero eigenvalues of (HH) are the same as the n
eigenvalues of HT H. The rest of the (m-n) eigenvalues of
HHT are zero

@ The eigenvectors u; corresponding to the n non-zero
eigenvalues of (HHT) are related to those of (HT H) through
the linear transformation in (7)
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SVD of H

@ Relation (7) becomes
Hv,-:u,- )\,’, 1§i§n (10)

@ Define
U=lui,u,us,...,us] €R™"

1 11 1
A2 = Diag(A2,\3,...,A3) € R™"
@ The n relations in (10) can be written succinctly as
HV =Ux2 or H=UXVT (11)

called the SVD of H
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Has a sum of rank-1 matrices

e Equation(11) on expanding:

_— :
A7 (3 0 Vl;
0 A\ 0 Vo
H = |:U]_,U2,U3,.-.,Un:| 2 : (12)
T
[0 0 Ag |t
1
=20\ ”iViT

@ ); 's are the eigenvalues of (H" H) and are known as the
singular values of H

@ Hence the name SVD
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A dual pair for SVD

o Multiplying both sides of (7) on the left by H” and using (7):

1
VA

HTu,- =

Vi

@ That is,

are the two defining relations for SVD of H
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A Generalization

o Let \ # 0,1 # 0 be such that ()\,n) is an eigenpair of HT H.
That is
(HTH)p = An (14)

e From
A(Hn) = H(HT H)n = (HHT)(Hn) (15)
it follows that (A, Hn) is an eigenpair of HHT
o If Hn =0, then (H"H)n = A = 0 which implies either
A = 0 or n = 0 or both zero, which is a contradiction.
° HeTnce (), Hn) is an eigenpair of (HHT) if (A, n) is that of
H"H
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Algebraic and geometric multiplicities of eigenvalues of
HTH

o Let \ be an eigenvalue of (HT H) of algebraic multiplicity,

say, m.
@ Then, recall that there exists a (non- unique) set of m
orthonormal eigenvectors {n1,72,73,...,nm} such that

(HTHYpi = An; for 1<i<m (16)
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Algebraic and geometric multiplicities of eigenvalues of
HHT

@ Let 71 and 7, be two orthogonal eigenvectors of H™ H for the
eigenvalue X\ of algebraic multiplicity m = 2

@ Then, Hny and Hny as eigenvectors of (HHT) are orthogonal

o For
(Hm) " (Hm) =n{ (HTHyp =M =0 (17)
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One to one correspondence

@ In view of (15) and (17), the following claim holds:

@ Claim: Let H be an m x n matrix of full rank.
Then
(1) The Gramians H™ H and HHT share the same set of
non-zero eigenvalues, and
(2) A is an eigenvalue of multiplicity m of (HT H) with an
orthogonal set of eigenvectors {n1,72,73,...,Mm}, then X is
also an eigenvalue of multiplicity m of (HHT) with an
orthogonal set of eigenvectors {Hn1, Hna, ..., Hom}
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Spectral decomposition of HHT € R™™ n > m

@ For completeness, we consider the case when n > m

o Since (HHT) is SPD, there exist (\;, u;), 1< i< n that are
eigenpairs of HHT

@ That is, ;
HH" u;) = \ju;, uj € R"
(HHTw) = X, "
or (HH")U = U
where U = [ug, up, u3, ..., up], UTU = UUT = I,
A= Diag(/\l,)\z, ce ;)\n)
where
M)A > > A, (19)
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Eigenpair of HTH € R™" n >m

@ Define 1
Vi = \//\»I.HTU,' € R"
@ Then
(HTH)v; = ——HT (HHT Yu; AT = Ay
1 \/x 1 \/)\»I 1 Vi

o Thatis, (\;,V;) is an eigenpair of HT H
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Eigen decomposition of HT H

@ Define
V = [Vl, Vo, V3, ..., Vn] € R™"

@ Then (21) becomes
(HTH)V = VA, w' =1, (22)

@ Also the m non-zero eigenvalues of HH are those of HHT
and the rest of (n-m) eigenvalues of H" H are zero.
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Dual of (20)

e Multiplying both sides of (20) on the left by H and using

(18):
Hy; = \/IX(HHT)u,- = /i
1
or uj= WHV,‘ (23)

which is the dual of (20)
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A note on our notation

@ In this and in all Modules to follow, we use the following
convention: H ¢ RM*"

e Case 1: m>nand H"H is SPD
(HTH)V =VA, VIiv=wT =,

24
(HHTYU=UAN, U'U=1, UecR™" (24)
e Case 2: n> mand HHT is SPD
(HHHYU=UA, UTU=UUT =1,
(25)

(HTH)V = VA, VTV =1, VeR™m
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A dual characterization of SVD

@ Casel: m>n
u; = ——=Hy,
1 \/)\—I 1
1
vi=—=H"v
@ Case2: n>m
R Tt o
1 \/)\—I 1
1
Hyv;

U= ——

\/)\_i

1
H
v
H
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Inner product and norm in R™

@ Let x,y € R™. The inner product is defined as

n
<X,y >:XTy:ZX,'y,':yTX:< Yy, X > (1)
i=1

@ Norm of a vector x is given by

m

X[ =< x,x >2= (3 x)? 2)
i=1
@ Cauchy- Schwartz inequality: From
<X,y >= |[|x[| [ly[| cos(6) (3)
it follows that
cos] = L=XY > 1 g (4)

X[ Iyl
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Projection of y along x - a geometric view

o Let X = ﬁ be the unit vector,
1% =1 (5)
°
<y, %>=y"% =||y||cos(6) (6)

which is the component of y in the direction X.

@ The vector (ycosf)X is called the projection of y along X

] £

R y cos@ X
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Orthogonality of this projection

@ Let e = y — (ycosf)X be the error in the projection
@ Then,

<ek>=e'R=y % — (ycosh)x T2 =0

@ Hence the name orthogonal projection
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Analytical expression for orthogonal projection

@ Let h€ R™ and x € R™ be any other vector

@ Any vector along h can be expressed as a multiple ha for
some real «

@ Problem: Given x and h, find o € R that minimizes the
distance between x and ha

@ That is, find o that minimizes
Q(a) = [|x — ha|* = (x — ha) T (x — ha)

=x"x—=2x"ha+a?h"h (8)
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Optimal «

@ Minimizer o* is obtained by solving

0= Z—Q = 2hTx+2ahTh
(0]
@ That is,
o = (h"h)th"x = h*x
where

h+ — (hTh)—lhT

is called the generalized inverse of h
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Expression for the projection

@ The orthogonal projection of x along h is given by

-
X=ha* h
R = ha* = hhtx = h(h"h) " hTx = Pyx

where

Py = hht = h(h"h)~"thT

is called the orthogonal projection matrix
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Orthogonality of projection

o Let
e=x—X=(l—Pp)x (14)

be the error in the projection

@ Clearly:
hTe=(h" —hTPy)x =0 (15)

since h" P, = (hTh)(hTh)=thT = hT

@ Hence, Py is called the orthogonal projection operator
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Properties of Py

Symmetry: P/ = Py,

ldempotent: P2 = P,

P is a rank one matrix

det(Pp) = 0, that is, Pj is singular

1 is the only non-zero eigenvalue of Pp,

Py is not an orthogonal matrix: PhT # P;l since P;l is not
defined
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A Generalization

e Let H e R™" with m>n and Rank(H) = n
e Then, (HTH) € R™" is SPD

o Let x € R™

]

Problem: Find an o € R" such that X = Ho € R

and
Q(a) = (x — Ha)T (x — Ha) =[x — Hal[

=x"x—2x"Ha +a"(HTH)a (16)

is a minimum
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Optimal «

@ From
VaQ(a) = —2H"x +2(H"H)a =0 (17)

it follows that

of =(HTH)Y 'HTx = H x (18)
minimizes Q(«) since

v2Q(a) = (H"H) is SPD (19)

o HF = (HTH)"*HT € R™™ is called the generalized inverse
of H
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Optimal projection

@ Then
R =Ha* = HHTH) 'H " x = HH"x = Pyx (20)

where
Py =HHTH)"IHT ¢ R™xm (21)

is the projection operator in R™ onto the n-dimensional
subspace spanned by the columns of H
e=x—X=(l—Py)x (22)

is the error in this projection

o Verify that
e"H=0 (23)

and hence the name orthogonal projection
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Properties of Py

Symmetry: P,E = Py

Idempotent: P% = Py

RANK(Py) = n since that of H is n
Py is singular

There are exactly n non-zero eigenvalues of Py

Py is not an orthogonal matrix
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Exercises

1) Let x€ R™and h=(1,1,...,1)7 € R™ and
h=(1,1,1,...,1)7 € R™ be a vector all of whose
components are 1. Compute an expression for a that
minimizes the distance between x and ha.

11
1 2
2) LetH = 1 3
1 4

o Compute H"H, HHT, Ht, Py, HH*, H*H, HH*H, H* HH+
e Compute the eigenvalues of Py
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Exercises continued

3) Verify the following:
a) HHYH =H
b) HFHHT = H*
c) (HtH)T = H*H
d) (HHT)T = HH*
Note: Any H™ satisfying the properties (a)-(d) is called the
Moore-Penrose inverse.
4) Given Py, define Pﬁ: | — Py
o Verify that P is symmetric and idempotent
o For the H in problem 2, Compute P and its rank

S.Lakshmivarahan Module 1.3

16 /16



MODULE 1.5
Second-order properties of random variables and
vectors

by
S.Lakshmivarahan
School of Computer Science
University of Oklahoma
Norman, OK-73019, USA
varahan@ou.edu

S.Lakshmivarahan Module 1.5 1/16



L, - space of square integrable random variables

o Let (Q,I, P) be a probability space
o Ly, =Ly(Q2, T, P) denote the family of square integrable
random variables

e Say that x(w) € L, if

/ x(w) 2dP(w) < oo (1)
Q

@ Ly is a real vector space-closed under addition and
multiplication by a real constant
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Second-order properties of random variables

Let x € Ly, with mean py = E[x] < o0

Variance of x: var(x) = 02 = E[(x — p)?] < o0

Covariance between x,y € Lj:

cov(x,y) = E[(x — px)(y — 1y)]

@ X, y are uncorrelated if cov(x, y)= 0
o Correlation between x,y € Ly:
cov(x,
corr(x,y) = cov(x.y)
ox0y

|corr(x,y)| <1
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A Geometric view of random variables in L,

Let x,y € Ly

Inner product of x and y: < x,y >= E(xy)

Norm of x: ||x|| =< x, x >i= [E(Xz)]%

Distance between x and vy:

dist(x,y) = |Ix — yl| = [E(x — y)2]2

x and y are orthogonal if < x,y >= E(x,y) =0

For mean zero random variables: orthogonality implies
uncorrelated
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Orthogonal projection in L

@ Let x be a random variable defined on (Q,T, P)

@ Let y be a random variable on a subspace (22, Y, P) where Y
is a sub o-field of I

@ Orthogonal projection theorem: For x € Lo(2,T, P) there
exists an unique X € L(Q, Y, P) such that
(a)llx = X[ = min{||x — y[| - y € [2(2, Y, P)}
(b)<x —X,y>=0forall y € LL,(Q,Y,P)
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Random vectors in L,

Let x € R™ be a random vector with x = (x1, X2, X3, ..., Xm)
Say x € L, if each component x; € L,

Mean of x = pix = E(x) = (1, pi2, 13, - - ., ftm) " where

wi = E(xi)

cov(xi, xj) = ojj = E[(xi — pui)(xj — )]

var(xi) = o7 = E[(xi — pu)?]

cov(x) = E[(x — p)(x — u)T] = [o5] =X € R

var(x) = -7 var(x;)

= El(x— )T (x = p)] = XiLy 0F = tr(X)
where tr(A) is called the trace of A.
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A geometric view of random vectors in L,

Let x,y € R™ be two random vectors in Ly

Inner product: < x,y >= E[xTy] = >, E(xiyi)
Norm: [|x||? =< x,x >= E[x"x] = 37, E(x;)?
Distance: ||[x —y|[? =< x—y,x —y >

= E[(x = y)T(x =)l = X7 E(x — yi)?
Orthogonal: x and y are orthogonal if < x,y >=0

For mean zero random vectors orthogonality implies
uncorrelated
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Orthogonal projection

@ The statement of orthogonal projection theorem carries over
verbatim if we replace random variables by random vectors

@ This projection theorem is the basis for generating optimal
prediction, optimal estimation in Time Series Analysis, Spatial
and Spatio-temporal statistics.

@ It also plays a key role in the Principal Component Analysis
(PCA) and in the development of Empirical orthogonal
functions (EOF)
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Centering

@ Let x € R™ be a random vector with mean p € R™ and
cov(x) =X € R™m
@ Then, y = x — p is called the centered version of x

o Clearly: E(y) =0 and cov(y) =X
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Normalization of x € R"

@ Let x € R™ be a random vector with mean 4 € R™ and
cov(x) =X withy =x—p
@ z; = Xl — Y s the normalized version of y;

UI Ul
@ Mean(z) =0, Var(z) =1
© z=(z1,22,...,2m)" is the centered and normalized version
of x
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Normalization (continued)

Let D = Diag(02,03,...,02,) - the diagonal matrix with the
diagonal of ¥

Define square root, DY/2 : D = DY/2D'/2 where

D1/2 = Diag(al,ag, ey O’m)

Define z = D™1/2Y = D71/2(x — p)

cov(z) = E(zz7) = DY2E(x — 1)(x — 1) T|D~V/2

= D 12¥ D12 = R = corr(z)
Correlation matrix: R = [Rj] and Rjj =

IRyl <1

9ij
0i0;j
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Linear Transformation of x € R™

Let Ac R™™ and b€ R™

Define £ = Ax+ b

Mean: E(§) = Ap + b where ;i = E(x)
cov(§) = E[(¢ — E(€))(€ — E(€))]

= E[(A(x — 1)) (A(x — 1)) 7]
= AE[(x — p)(x — ) T]AT = AL AT

o Thus, if x ~ N(m,X), & ~ N(Am + b, AZAT)
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A special linear transformation

Let x € R™ with mean p and cov(x) = X, SPD
Define square root of ¥ : ¥ = ¥1/251/2

let £ = X12(x — p)

Then E() =0

cov(€) = E[(Z 12 (x — p)) (T2 (x — )]

= T2E](x — p)(x — ) T]E V2

=y 2ry-l2 =
That is: var(&;) =1 and cov(§, &) =0 for i # j
This is known as Whitening transformation
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Linear functional of x

Let a € R™ and x € R™ with mean g and cov(x)

T

Define n = a' x, a real random variable

E(n)=a'p

var(n) = E[(aT (x — u))?2] = E[(a" (x — m))(a” (x — )]
= E[a” (x — p)(x —p)Ta"]
=a'Ya

@ Clearly, n is a non-degenerate random variable

(that is, var(n) >0) for all a € R", if and only if X is SPD
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Exercise

@ Prove that |Rjj| = |

0','!' |
agioj

«O0>» «F» «=)» <« » Q>



