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Eigenvalue and eigenvector pair of a matrix

Let A ∈ Rn×n be a real matrix of order n

If there exist a scalar, λ(real/complex) and a vector,
v(real/complex) such that

Av = λv (1)

then λ is the eigenvalue and v is the corresponding
eigenvector of A

The pair (λ, v) satisfying (1) is called an eigenpair of A

The set of all eigenvalues of A is called the spectrum of A
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Invariant subspace of A

Let Sk = {v1, v2, ....., vk} be a set of linearly independent
vectors in Rn

SPAN(Sk) denotes the set of all linear combinations of the
vectors in Sk

SPAN(Sk) is a K-dimensional subspace of Rn

If AX ∈ SPAN(Sk) for any X ∈ SPAN(Sk), then Sk is said to
be A-invariant

From (1), since Av ∈ SPAN(v), every eigenvector defines an
invariant subspace of dimension 1.
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Eigenvalues of A

Rewrite(1) as a linear homogeneous system:

(A− λI )v = 0 (2)

Equation (2) has a non-null solution, exactly when (A− λI ) is
singular, that is

p(λ) = |A− λI | = 0 (3)

The n eigenvalues of A are given by the n roots of the
characteristic polynomial, p(λ) of A
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Distribution of eigenvalues of A

Since A is real, the coefficients of p(λ) are also real

An nth degree polynomial of degree n has n roots

The roots are real or complex and the complex roots occur in
conjugate pairs

A typical distribution of eigenvalues
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Eigenpairs of a real symmetric matrix

Let A ∈ Rn×n and AT = A, that is, A is symmetric

SM1: The eigenvalues of a real symmetric matrix are real

SM2: Eigenvectors corresponding to distinct eigenvalues are
orthogonal

SM3: If λ as a root of p(λ) = 0 in (3) is of (algebraic)
multiplicity 1 ≤ k ≤ n, then there exists a set of k mutually
orthogonal vectors v1, v2, v3, ..., vk such that (λ, vi ) is an
eigenpair of A for 1 ≤ i ≤ k , that is, k is also the geometric
multiplicity which is the dimension of the invariant subspace
spanned by {v1, v2, .....vk} where Avi = λvi for 1 ≤ i ≤ k
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Matrix of eigenvalues and eigenvectors

Let (λi , vi ) such that
Avi = λivi (4)

Define
V = [v1, v2, ..., vn] ∈ Rn×n

Λ = Diag [λ1, λ2, ..., λn] ∈ Rn×n

Then (4) becomes:
AV = VΛ (5)

The eigenvectors are mutually orthogonal (see appendix)

vTi vj 6= 0 for i = j

= 0 otherwise
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Orthonormality of eigenvectors

Since Av = λv =⇒ A(αv) = λ(αv) for any α, non-zero
constant, we need to only consider unit vector for
eigenvectors.

Consequently, assume that the vectors vi in (4) are
orthonormal:

vTi vj = 1 if i = j

= 0 otherwise
(6)
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v-orthogonal matrix

Hence, V is an orthogonal matrix, that is, using (6):

V TV =


vT1
vT2
vT3

...
vTn


[
v1, v2, v3, . . . , vn

]

=


vT1 v1 vT1 v2 . . . v

T
1 vn

vT2 v1 vT2 v2 . . . v
T
2 vn

vT3 v1 vT3 v2 . . . v
T
3 vn

...
vTn v1 vTn v2 . . . v

T
n vn


= In = VV T (7)
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Spectral or eigen decomposition of a symmetric matrix

Multiplying both sides of (5) by V T and using (7), we obtain

A = AVV T = VΛV T (8)

This multiplicative decomposition in (8) is called the eigen
decomposition of A
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Eigen decomposition continued

Expanding V and Λ in (8): A =

[
v1, v2, v3, . . . , vn

]

λ1 0 . . . 0
0 λ2 . . . 0
...

...
...

0 0 . . . λn



vT1
vT2

...
vTn


=

n∑
i=1

λiViV
T
i (9)

Since ViV
T
i is a rank-1 (outer product) matrix, (9) expresses

A as a sum of n linearly independent rank-1 matrices

S.Lakshmivarahan Module 1.1 11 / 27



A digression

Consider:

Let ĥ = h
||h|| be the unit vector along h

Orthogonal projection, x̄ of x along h is given by

x̄ = (xT ĥ)ĥ = (ĥT x)ĥ = ĥ(ĥT x) = (ĥĥT )x (10)

The rank-1 matrix

Ph = (ĥĥT ) (11)

is called an orthogonal projection matrix and (10) becomes:

x̄ = Phx

S.Lakshmivarahan Module 1.1 12 / 27



Eigen decomposition of A

Consequently, the rank-1 matrix viv
T
i in (9) is an orthogonal

projection matrix along vi

That is, (9) expresses A as a linear combination of orthogonal
projection matrices
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A-symmetric and positive definite (SPD)

In this case, the eigenvalues of A are all real and positive

That is, we can express

Λ = Λ
1
2 Λ

1
2 (12)

where

Λ
1
2 = Diag(λ

1
2
1 , λ

1
2
2 , . . . , λ

1
2
n )

A = VΛV T = VΛ
1
2 Λ

1
2V T

= (VΛ
1
2 )(VΛ

1
2 )T = V̄ V̄ T (13)

is the another form of the eigen decomposition for A
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Why SPD matrices?

In multivariate statistical analysis, SPD matrices arise
naturally as covariance matrices

In fact, the many well known methods in multivariate
statistical analysis such as

Principal Component Analysis (PCA)
Singular Value Decomposition (SVD)
Cononical Correlation (CC)

are based on the spectral or eigen decomposition of SPD
matrices
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APPENDIX

The goal of this appendix is to provide a proof of various
properties of real symmetric matrices used in the development
of this module

The final result is to prove that every real symmetric matrix is
diagonalizable using orthogonal transformation
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Existence of eigenvalues and eigenvectors

Let A be a real symmetric matrix of order n ≥ 2

The characteristic polynomial equation

p(λ) = |A− λI | = 0 (14)

of degree n must have at least one solution, say, α

Then, there is atleast one real eigenvector that lies in the null
space of (A− λI ) or the kernel of (A− λI )
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A factorization of p(λ)

In general, the monic polynomial can be expressed as

p(λ) =
k∏

i=1

(λ− λi )ni (15)

where ni is the algebraic multiplicity of λi and
(n1 + n2 + . . .+ nk) = n

The number of distinct eigenvectors mi corresponding to a
given eigenvalue λi is called the geometric multiplicity

In general, 1 ≤ mi ≤ ni , when A is symmetric, mi = ni for
1 ≤ i ≤ k
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Claim 1: Eigenvalues of a real symmetric matrix are real

Let (λ, v) be an eigenpair of A. That is

Av = vλ (16)

Taking complex conjugates of both sides:

Av̄ = v̄ λ̄ (17)

Multiplying both sides of (16) by v̄T on the left and that of
(17) by vT on the left and subtracting

0 = v̄TAv − vTAv̄ = λv̄T v − λ̄vT v̄ = vT v̄(λ− λ̄) (18)

Since vT v̄>0, =⇒ λ = λ̄ and hence the claim
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Claim 2: Eigenvectors corresponding to different
eigenvalues of a real symmetric matrix are orthogonal

Let (λ, v) and (µ, u) be two eigenpairs of a symmetric matrix
A and let λ 6= µ

Then Av = λv and Au = µu (19)

Multiplying both sides of the first equation on the left by uT

and that of the second by vT and subtracting:

0 = uTAv − vTAu = λuT v − µvTu = (λ− µ)uT v (20)

Since λ 6= µ, it is immediate that uT v = 0 and the claim
follows
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A notation

Let D ⊂ Rn denote an A-invariant subspace of A. That is,
Av ∈ D when v ∈ D

Let D⊥ denote the subspace of Rn that is orthogonal to D.
That is uT v=0 whenever u ∈ D and v ∈ D⊥
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Claim 3: If D ⊆ Rn is A-invariant, then so is D⊥

For any u, v ∈ Rn

vTAu = (Av)Tu (21)

If u ∈ D, then Au ∈ D. If v ∈ D⊥, then vTAu = 0

From (Av)Tu = 0, it follows that Av ∈ D⊥, and the claim is
true.
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Claim 4: Every (non-null) A-invariant subspace D of A
contains a real eigenvector of A

Let k be the dimension of D. Then there exists a n× k matrix
B whose columns constitute an orthogonal basis for D.

Since D is A-invariant, it is immediate that

AB = BE (22)

for some E ∈ Rk×k

Then,

BTAB = BTBE = E (23)

where E is a real symmetric matrix

S.Lakshmivarahan Module 1.1 23 / 27



Proof of claim 4 (Continues)

Since E is real and symmetric, there exists atleast one
eigenpair (λ, x) for E: Ex = λx where x ∈ Rk

Then (AB)x = A(Bx) = (BE )x = B(Ex) = λ(Bx)

Since x 6= 0 and the columns of B are orthogonal and hence
linearly independent, it follows that Bx 6= 0

Hence, Bx is an eigenvector A contained in D
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Claim 5: The set of all n eigenvectors of a real symmetric
matrix A ∈ Rn×n form an orthogonal basis for Rn

Recall that every real symmetric matrix A is endowed with at
least one eigen pair

Hence, for some m ≥ 1, let {v1, v2, . . . , vm} be the
(orthonormal) eigenvector basis for a subspace D of Rn

Clearly, D and D⊥ are A-invariant.Hence, there is a vector
vm+1 ∈ D⊥ such that {v1, v2, . . . , vm+1} are the eigenvectors
of A.

Starting with m=1 and using this inductive argument, we
obtain an orthonormal basis for Rn which are eigenvectors of
A
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Claim 6: Every real symmetric matrix A is diagonalizable

Given A, let v=[v1, v2, . . . , vn] ∈ Rn×n be the matrix of
eigenvectors of A, that is Avi = viλi and
Λ = Diag(λ1, λ2, . . . , λn) ∈ Rn×n

Then AV = VΛ and V TV = VV T = I

Hence, V TAV = Λ
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What is SVD?

This module 1.1 contains results relating to the spectral
decomposition of square, real symmetric matrices

This module 1.2 contains analogous results for rectangular
matrices, H ∈ Rm×n called SVD of H

SVD rests on the spectral decomposition of symmetric
matrices HTH and HHT are called the Gramian of H
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Gramians of H

Given H ∈ Rm×n, define two related square, symmetric
matrices: HTH ∈ Rn×n and HHT ∈ Rm×m called the
Gramians of H

Assume that H is of full rank, that is,

RANK (H) = min(n,m) (1)

From

RANK (HTH) = RANK (H) = RANK (HHT ) (2)

it follows that

RANK (HTH) = RANK (HHT ) = min(n,m) (3)

Hence, when m > n, HTH ∈ Rn×n is non singular and in
fact, is SPD. But HHT is singular and non-negative definite
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Spectral decomposition of HTH ∈ Rn×n when m > n

Since the smaller Gramian HTH is an SPD matrix, there
exists eigenpairs (λi , vi ) 1 ≤ i ≤ n such that

(HTH)V = VΛ (4)

where V = [v1, v2, . . . , vn] ∈ Rn×n and
Λ = Diag(λ1, λ2, . . . , λn) ∈ Rn×n and V TV = VV T = In

Also, assume that

λ1 ≥ λ2 ≥ . . . ≥ λn > 0 (5)

Hence,

V T (HTH)V = Λ and HTH = VΛV T (6)
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Eigenpair of HHT ∈ Rm×m,m > n

Define

ui =
1√
λi
Hvi ∈ Rm, 1 ≤ i ≤ n (7)

Then

(HTH)ui =
1√
λi
H(HTH)vi =

λi√
λi
Hvi = λiui (8)

That is, if (λi , vi ) is an eigenpair of (HTH), then (λi , ui ) is
an eigenpair of HHT with ui given by (7)
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Spectral decomposition of HHT ∈ Rm×m,m > n

Let U = [u1, u2, . . . , un] ∈ Rm×n. Then (7) is equivalent to

(HHT )U = UΛ (9)

The n non-zero eigenvalues of (HHT ) are the same as the n
eigenvalues of HTH. The rest of the (m-n) eigenvalues of
HHT are zero

The eigenvectors ui corresponding to the n non-zero
eigenvalues of (HHT ) are related to those of (HTH) through
the linear transformation in (7)

S.Lakshmivarahan Module 1.2 6 / 19



SVD of H

Relation (7) becomes

Hvi = ui
√
λi , 1 ≤ i ≤ n (10)

Define
U = [u1, u2, u3, . . . , un] ∈ Rm×n

Λ
1
2 = Diag(λ

1
2
1 , λ

1
2
2 , . . . , λ

1
2
n ) ∈ Rn×n

The n relations in (10) can be written succinctly as

HV = Uλ
1
2 or H = Uλ

1
2V T (11)

called the SVD of H
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Has a sum of rank-1 matrices

Equation(11) on expanding:

H =
[
u1, u2, u3, . . . , un

]

λ

1
2
1 0 . . . 0

0 λ
1
2
2 . . . 0

...
...

...

0 0 . . . λ
1
2
n



vT1
vT2

...
vTn

 (12)

=
∑n

i=1 λ
1
2
i uiv

T
i

λi ’s are the eigenvalues of (HTH) and are known as the
singular values of H

Hence the name SVD
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A dual pair for SVD

Multiplying both sides of (7) on the left by HT and using (7):

HTui =
1√
λi

(HTH)vi =
1√
λi
λivi =

√
λivi

That is,

vi =
1√
λi
HTui and

ui =
1√
λi
Hvi

(13)

are the two defining relations for SVD of H
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A Generalization

Let λ 6= 0, η 6= 0 be such that (λ, η) is an eigenpair of HTH.
That is

(HTH)η = λη (14)

From

λ(Hη) = H(HTH)η = (HHT )(Hη) (15)

it follows that (λ,Hη) is an eigenpair of HHT

If Hη = 0, then (HTH)η = λη = 0 which implies either
λ = 0 or η = 0 or both zero, which is a contradiction.

Hence (λ,Hη) is an eigenpair of (HHT ) if (λ, η) is that of
HTH
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Algebraic and geometric multiplicities of eigenvalues of
HTH

Let λ be an eigenvalue of (HTH) of algebraic multiplicity,
say, m.

Then, recall that there exists a (non- unique) set of m
orthonormal eigenvectors {η1, η2, η3, . . . , ηm} such that

(HTH)ηi = ληi for 1 ≤ i ≤ m (16)

S.Lakshmivarahan Module 1.2 11 / 19



Algebraic and geometric multiplicities of eigenvalues of
HHT

Let η1 and η2 be two orthogonal eigenvectors of HTH for the
eigenvalue λ of algebraic multiplicity m = 2

Then, Hη1 and Hη2 as eigenvectors of (HHT ) are orthogonal

For

(Hη1)T (Hη2) = ηT1 (HTH)η2 = ληT1 η2 = 0 (17)
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One to one correspondence

In view of (15) and (17), the following claim holds:

Claim: Let H be an m × n matrix of full rank.
Then
(1) The Gramians HTH and HHT share the same set of
non-zero eigenvalues, and
(2) λ is an eigenvalue of multiplicity m of (HTH) with an
orthogonal set of eigenvectors {η1, η2, η3, . . . , ηm}, then λ is
also an eigenvalue of multiplicity m of (HHT ) with an
orthogonal set of eigenvectors {Hη1,Hη2, . . . ,Hηm}
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Spectral decomposition of HHT ∈ Rm×m, n > m

For completeness, we consider the case when n > m

Since (HHT ) is SPD, there exist (λi , ui ), 1 ≤ i ≤ n that are
eigenpairs of HHT

That is,
(HHTui ) = λiui , ui ∈ Rn

or (HHT )U = Uλ
(18)

where U = [u1, u2, u3, . . . , un],UTU = UUT = Im
Λ = Diag(λ1, λ2, . . . , λn)
where

λ1 ≥ λ2 ≥ . . . ≥ λn (19)
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Eigenpair of HTH ∈ Rn×n, n >m

Define

vi =
1√
λi
HTui ∈ Rn (20)

Then

(HTH)vi =
1√
λi
HT (HHT )ui =

λi√
λi
HTui = λivi (21)

That is, (λi , vi ) is an eigenpair of HTH
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Eigen decomposition of HTH

Define
V = [v1, v2, v3, . . . , vn] ∈ Rn×n

Then (21) becomes

(HTH)V = VΛ, vvT = In (22)

Also the m non-zero eigenvalues of HHT are those of HHT

and the rest of (n-m) eigenvalues of HTH are zero.
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Dual of (20)

Multiplying both sides of (20) on the left by H and using
(18):

Hvi =
1√
λi

(HHT )ui =
√
λiui

or ui =
1√
λi
Hvi (23)

which is the dual of (20)
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A note on our notation

In this and in all Modules to follow, we use the following
convention: H ∈ Rm×n

Case 1: m > n and HTH is SPD

(HTH)V = VΛ, V TV = VV T = In

(HHT )U = UΛ, UTU = In, U ∈ Rm×n
(24)

Case 2: n > m and HHT is SPD

(HHT )U = UΛ, UTU = UUT = Im

(HTH)V = VΛ, V TV = Im, V ∈ Rn×m
(25)
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A dual characterization of SVD

Case 1: m > n

ui =
1√
λi
Hvi

vi =
1√
λi
HT vi

(26)

Case 2: n > m

vi =
1√
λi
HTui

ui =
1√
λi
Hvi

(27)
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Inner product and norm in Rm

Let x , y ∈ Rm. The inner product is defined as

< x , y >= xT y =
n∑

i=1

xiyi = yT x =< y , x > (1)

Norm of a vector x is given by

||x || =< x , x >
1
2 = (

m∑
i=1

x2i )
1
2 (2)

Cauchy- Schwartz inequality: From

< x , y >= ||x || ||y || cos(θ) (3)

it follows that

|cosθ| =
| < x , y > |
||x || ||y ||

≤ 1 (4)
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Projection of y along x - a geometric view

Let x̂ = x
||x || be the unit vector,

||x̂ || = 1 (5)

< y , x̂ >= yT x̂ = ||y ||cos(θ) (6)

which is the component of y in the direction x̂ .

The vector (ycosθ)x̂ is called the projection of y along x̂

S.Lakshmivarahan Module 1.3 3 / 16



Orthogonality of this projection

Let e = y − (ycosθ)x̂ be the error in the projection

Then,

< e, x̂ >= eT x̂ = yT x̂ − (ycosθ)x̂T x̂ = 0 (7)

Hence the name orthogonal projection
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Analytical expression for orthogonal projection

Let h ∈ Rm and x ∈ Rm be any other vector

Any vector along h can be expressed as a multiple hα for
some real α

Problem: Given x and h, find α ∈ R that minimizes the
distance between x and hα

That is, find α that minimizes

Q(α) = ||x − hα||2 = (x − hα)T (x − hα)

= xT x − 2xThα + α2hTh (8)
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Optimal α

Minimizer α∗ is obtained by solving

0 =
dQ

dα
= −2hT x + 2αhTh (9)

That is,

α∗ = (hTh)−1hT x = h+x (10)

where

h+ = (hTh)−1hT (11)

is called the generalized inverse of h
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Expression for the projection

The orthogonal projection of x along h is given by

x̂ = hα∗ = hh+x = h(hTh)−1hT x = Phx (12)

where

Ph = hh+ = h(hTh)−1hT (13)

is called the orthogonal projection matrix
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Orthogonality of projection

Let
e = x − x̂ = (I − Ph)x (14)

be the error in the projection

Clearly:

hT e = (hT − hTPh)x = 0 (15)

since hTPh = (hTh)(hTh)−1hT = hT

Hence, Ph is called the orthogonal projection operator
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Properties of Ph

Symmetry: PT
h = Ph

Idempotent: P2
h = Ph

Ph is a rank one matrix

det(Ph) = 0, that is, Ph is singular

1 is the only non-zero eigenvalue of Ph

Ph is not an orthogonal matrix: PT
h 6= P−1h since P−1h is not

defined
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A Generalization

Let H ∈ Rm×n with m>n and Rank(H) = n

Then, (HTH) ∈ Rn×n is SPD

Let x ∈ Rm

Problem: Find an α ∈ Rn such that x̂ = Hα ∈ R
and

Q(α) = (x − Hα)T (x − Hα) = ||x − Hα||2

= xT x − 2xTHα + αT (HTH)α (16)

is a minimum
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Optimal α

From

OαQ(α) = −2HT x + 2(HTH)α = 0 (17)

it follows that

α∗ = (HTH)−1HT x = H+x (18)

minimizes Q(α) since

O2
αQ(α) = (HTH) is SPD (19)

H+ = (HTH)−1HT ∈ Rn×m is called the generalized inverse
of H
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Optimal projection

Then

x̂ = Hα∗ = H(HTH)−1HT x = HH+x = PHx (20)

where

PH = H(HTH)−1HT ∈ Rm×m (21)

is the projection operator in Rm onto the n-dimensional
subspace spanned by the columns of H

e = x − x̂ = (I − PH)x (22)

is the error in this projection

Verify that

eTH = 0 (23)

and hence the name orthogonal projection
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Properties of PH

Symmetry: PT
H = PH

Idempotent: P2
H = PH

RANK (PH) = n since that of H is n

PH is singular

There are exactly n non-zero eigenvalues of PH

PH is not an orthogonal matrix
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Chapters 5 and 6 in J. Lewis, S. Lakshmivarahan and S.K.
Dhall (2006) Dynamic Data Assimilation, Cambridge
University Press.
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Exercises

1) Let x ∈ Rm and h = (1, 1, . . . , 1)T ∈ Rm and
h = (1, 1, 1, . . . , 1)T ∈ Rm be a vector all of whose
components are 1. Compute an expression for α that
minimizes the distance between x and hα.

2) Let H =


1 1
1 2
1 3
1 4


Compute HTH, HHT , H+, PH , HH+, H+H, HH+H, H+HH+

Compute the eigenvalues of PH
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Exercises continued

3) Verify the following:
a) HH+H = H
b) H+HH+ = H+

c) (H+H)T = H+H
d) (HH+)T = HH+

Note: Any H+ satisfying the properties (a)-(d) is called the
Moore-Penrose inverse.

4) Given PH , define P⊥H = I − PH

Verify that P⊥
H is symmetric and idempotent

For the H in problem 2, Compute P⊥
H and its rank
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L2 - space of square integrable random variables

Let (Ω, Γ,P) be a probability space

L2 = L2(Ω, Γ,P) denote the family of square integrable
random variables

Say that x(ω) ∈ L2 if∫
Ω
|x(ω)|2dP(ω) <∞ (1)

L2 is a real vector space-closed under addition and
multiplication by a real constant
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Second-order properties of random variables

Let x ∈ L2, with mean µx = E [x ] <∞
Variance of x: var(x) = σ2

x = E [(x − µ)2] <∞
Covariance between x , y ∈ L2:

cov(x , y) = E [(x − µx)(y − µy )]

x, y are uncorrelated if cov(x, y)= 0

Correlation between x , y ∈ L2:

corr(x , y) =
cov(x , y)

σxσy

|corr(x , y)| ≤ 1
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A Geometric view of random variables in L2

Let x , y ∈ L2

Inner product of x and y: < x , y >= E (xy)

Norm of x: ||x || =< x , x >
1
2 = [E (x2)]

1
2

Distance between x and y:

dist(x , y) = ||x − y || = [E (x − y)2]
1
2

x and y are orthogonal if < x , y >= E (x , y) = 0

For mean zero random variables: orthogonality implies
uncorrelated
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Orthogonal projection in L2

Let x be a random variable defined on (Ω, Γ,P)

Let y be a random variable on a subspace (Ω,Y ,P) where Y
is a sub σ-field of Γ

Orthogonal projection theorem: For x ∈ L2(Ω, Γ,P) there
exists an unique x̂ ∈ L2(Ω,Y ,P) such that
(a)||x − x̂ || = min{||x − y || : y ∈ L2(Ω,Y ,P)}
(b)<x − x̂ , y> = 0 for all y ∈ L2(Ω,Y ,P)
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Random vectors in L2

Let x ∈ Rm be a random vector with x = (x1, x2, x3, . . . , xm)

Say x ∈ L2 if each component xi ∈ L2

Mean of x = µx = E (x) = (µ1, µ2, µ3, . . . , µm)T where
µi = E (xi )

cov(xi , xj) = σij = E [(xi − µi )(xj − µj)]

var(xi ) = σ2
i = E [(xi − µi )2]

cov(x) = E [(x − µ)(x − µ)T ] = [σij ] = Σ ∈ Rm×m

var(x) =
∑n

i=1 var(xi )
= E [(x − µ)T (x − µ)] =

∑n
i=1 σ

2
i = tr(Σ)

where tr(A) is called the trace of A.
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A geometric view of random vectors in L2

Let x , y ∈ Rm be two random vectors in L2

Inner product: < x , y >= E [xT y ] =
∑m

i=1 E (xiyi )

Norm: ||x ||2 =< x , x >= E [xT x ] =
∑m

i=1 E (xi )
2

Distance: ||x − y ||2 =< x − y , x − y >
= E [(x − y)T (x − y)] =

∑m
i=1 E (xi − yi )

2

Orthogonal: x and y are orthogonal if < x , y >= 0

For mean zero random vectors orthogonality implies
uncorrelated
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Orthogonal projection

The statement of orthogonal projection theorem carries over
verbatim if we replace random variables by random vectors

This projection theorem is the basis for generating optimal
prediction, optimal estimation in Time Series Analysis, Spatial
and Spatio-temporal statistics.

It also plays a key role in the Principal Component Analysis
(PCA) and in the development of Empirical orthogonal
functions (EOF)
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Centering

Let x ∈ Rm be a random vector with mean µ ∈ Rm and
cov(x) = Σ ∈ Rm×m

Then, y = x − µ is called the centered version of x

Clearly: E(y) = 0 and cov(y) = Σ
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Normalization of x ∈ Rn

Let x ∈ Rm be a random vector with mean µ ∈ Rm and
cov(x) = Σ with y = x − µ
zi = xi−µi

σi
= yi

σi
is the normalized version of yi

Mean(zi ) = 0 , Var(zi ) = 1

z = (z1, z2, . . . , zm)T is the centered and normalized version
of x
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Normalization (continued)

Let D = Diag(σ2
1, σ

2
2, . . . , σ

2
m) - the diagonal matrix with the

diagonal of Σ

Define square root, D1/2 : D = D1/2D1/2 where
D1/2 = Diag(σ1, σ2, . . . , σm)

Define z = D−1/2Y = D−1/2(x − µ)

cov(z) = E (zzT ) = D−1/2E [(x − µ)(x − µ)T ]D−1/2

= D−1/2ΣD−1/2 = R = corr(z)

Correlation matrix: R = [Rij ] and Rij =
σij
σiσj

|Rij | ≤ 1
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Linear Transformation of x ∈ Rm

Let A ∈ Rm×m and b ∈ Rm

Define ξ = Ax + b

Mean: E (ξ) = Aµ+ b where µ = E (x)

cov(ξ) = E [(ξ − E (ξ))(ξ − E (ξ))T ]
= E [(A(x − µ))(A(x − µ))T ]
= AE [(x − µ)(x − µ)T ]AT = AΣAT

Thus, if x ∼ N(m,Σ), ξ ∼ N(Am + b,AΣAT )
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A special linear transformation

Let x ∈ Rm with mean µ and cov(x) = Σ, SPD

Define square root of Σ : Σ = Σ1/2Σ1/2

let ξ = Σ−1/2(x − µ)

Then E (ξ) = 0

cov(ξ) = E [(Σ−1/2(x − µ))(Σ−1/2(x − µ))T ]
= Σ−1/2E [(x − µ)(x − µ)T ]Σ−1/2

= Σ−1/2ΣΣ−1/2 = I

That is: var(ξi ) = 1 and cov(ξi , ξj) = 0 for i 6= j

This is known as Whitening transformation
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Linear functional of x

Let a ∈ Rm and x ∈ Rm with mean µ and cov(x)

Define η = aT x , a real random variable

E (η) = aTµ

var(η) = E [(aT (x − µ))2] = E [(aT (x − µ))(aT (x − µ))]
= E [aT (x − µ)(x − µ)TaT ]
= aTΣa

Clearly, η is a non-degenerate random variable
(that is, var(η) >0) for all a ∈ Rn, if and only if Σ is SPD
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Exercise

1 Prove that |Rij | = | σijσiσj
|
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