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Abstract— Objective: Since computer-aided diagnosis (CAD) 

schemes of medical images usually computes large number of 

image features, which creates a challenge of how to identify a 

small and optimal feature vector to build robust machine 

learning models, the objective of this study is to investigate 

feasibility of applying a random projection algorithm (RPA) to 

build an optimal feature vector from the initially CAD-generated 

large feature pool and improve performance of machine learning 

model. Methods: We assemble a retrospective dataset involving 

1,487 cases of mammograms in which 644 cases have confirmed 

malignant mass lesions and 843 have benign lesions. A CAD 

scheme is first applied to segment mass regions and initially 

compute 181 features. Then, support vector machine (SVM) 

models embedded with several feature dimensionality reduction 

methods are built to predict likelihood of lesions being malignant. 

All SVM models are trained and tested using a leave-one-case-out 

cross-validation method. SVM generates a likelihood score of 

each segmented mass region depicting on one-view mammogram. 

By fusion of two scores of the same mass depicting on two-view 

mammograms, a case-based likelihood score is also evaluated. 

Results: Comparing with the principle component analyses, 

nonnegative matrix factorization, and Chi-squared methods, 

SVM embedded with RPA yielded a significantly higher case-

based lesion classification performance with the area under ROC 

curve of 0.84±0.01 (p<0.02). Conclusion: The study demonstrates 

that RPA is a promising method to generate optimal feature 

vectors and improve SVM performance. Significance: This study 

presents a new method to develop CAD schemes with 

significantly higher and robust performance. 

 
Index Terms— breast cancer diagnosis, computer-aided 

diagnosis (CAD) of mammograms, feature dimensionality 

reduction, lesion classification, random projection algorithm, 

support vector machine (SVM). 
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I. INTRODUCTION 

EVELOPING computer-aided detection and diagnosis 

(CAD) schemes of medical images have been attracting 

broad research interest in order to detect suspicious diseased 

regions, classify between malignant and benign lesions, 

quantify disease severity, and predict disease prognosis or 

monitor treatment efficacy. Some CAD schemes have been 

used as “a second reader” or quantitative image marker 

assessment tools in clinical practice to assist clinicians (i.e., 

radiologists) aiming to improve image reading accuracy and 

reduce the inter-reader variability [1]. Despite of extensive 

research effort and progress made in the CAD field, 

researchers still face many challenges in developing CAD 

schemes for clinical applications [2]. For example, in 

developing CAD schemes, machine learning plays a critical 

role, which use image features to train classification models to 

predict the likelihood of the analyzed regions depicting or 

patterns representing diseases. However, due to the great 

heterogeneity of disease patterns and the limited size of image 

datasets, how to identify a small and optimal image feature 

vector to build the highly performed and robust machine 

learning models remains a difficult task.  

In current CAD schemes, after image preprocessing to 

reduce image noise, detecting and segmenting suspicious 

regions of interest (ROIs), CAD schemes can compute many 

image features from the entire image region or the segmented 

ROIs. Recently, two methods have attracted broad research 

interest to compute image features. One uses a deep transfer 

learning model as an automated feature extractor (i.e., 

extracting 4,096 features in a fully connected layer (FC6 or 

FC7) of an AlexNet). The disadvantage of this approach is 

requiring very big training and validation image datasets, 

which are often not available in medical image fields. Another 

approach uses radiomics concept and method to compute and 

generate an initial feature pool. Although Radiomics typically 

computes smaller number of features than deep learning based 

feature extractors, it may still compute many features (i.e., 

>1,000 image features, which mostly represent texture patterns 

of the segmented ROIs in variety of scanning directions as 

reported in previous studies [3, 4]). However, due to the 

limited size of the training datasets, such large number of 

image features can often drive to overfit machine learning 

models and reduce model robustness. Thus, it is important to 

build an optimal feature vector from the initially large feature 
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pool in which the generated features should not be redundant 

or highly correlated [5]. Then, machine learning models can 

be better trained to achieve the enhanced performance and 

robustness. In general, if the feature dimensionality reduction 

happens with choosing the most effective image features from 

the initial feature pool, it is known as feature selection (i.e., 

using sequential forward floating selection (SFFS) [6]). On the 

other hand, if the dimensionality reduction comes from 

reanalyzing the initial set of features to produce a new set of 

orthogonal features, it is known as feature regeneration (i.e., 

principal component analysis (PCA) and its modified 

algorithms [7]). Comparing between these two methods, 

feature regeneration method has advantages to more 

effectively eliminate or reduce redundancy or correlation in 

the final optimal image feature vector. However, most of 

medical image data or features have very complicated or 

heterogeneous distribution patterns, which may not meet the 

precondition that all feature variables are linear to optimally 

apply PCA-type feature regeneration methods.  

In order to better address this challenge and more reliably 

regenerate image feature vector for developing CAD schemes 

of medical images, we investigate and test another feature 

regeneration method namely, a random projection algorithm 

(RPA), which is an efficient way to map features into a space 

with a lower-dimensional subspace, while preserving the 

distances between points under better contrast. This mapping 

process is done with a random projection matrix. In the lower 

space since the distance is preserved, it will be much easier 

and reliably to classify between two feature classes. Because 

of its advantages and high performance, RPA has been tested 

and implemented in a wide range of engineering applications 

including handwrite recognition [8], face recognition and 

detection [9], visual object tracking and recognition [10, 11], 

and car detection [12].  

Thus, motivated by the success of applying RPA to the 

complex and nonlinear feature data used in many engineering 

application domains, we hypothesize that RPA also has 

advantages when applying to medical images with the 

heterogeneous feature distributions. To test our hypothesis, we 

conduct this study to investigate feasibility and potential 

advantages of applying RPA to build optimal feature vector 

and train machine learning model implemented in a new 

computer-aided diagnosis (CAD) scheme to classify between 

malignant and benign breast lesions depicting on digital 

mammograms. The details of the assembled image dataset, the 

experimental methods of feature regeneration using RPA and 

a support vector machine (SVM) model optimization, data 

analysis and performance evaluation results are presented in 

the following sections.  

II. MATERIALS AND METHODS 

A. Image Dataset 

A fully anonymized dataset of full-field digital 

mammography (FFDM) images acquired from 1,487 patients 

are retrospectively assembled and used in this study. All cases 

were randomly selected by an institutional review board (IRB) 

certified research coordinator from the cancer repository and 

picture archive and communication system (PACS). All 

selected cases have suspicious soft-tissue mass type lesions 

previously detected by the radiologists on the mammograms. 

Based on lesion biopsy results, 644 cases depict malignant 

lesions and 843 cases had benign lesions. These patients have 

an age range from 35 to 80 years old. Table I summarizes and 

compares case distribution information of patients’ age and 

mammographic density rated by radiologists using breast 

imaging reporting and data system (BIRADS) guidelines. As 

shown in the table, patients in benign group are moderately 

younger than the patients in the malignant group. However, 

there is not a significant difference of mammographic density 

between the two groups of patients (𝑝 = 0.576).  

All FFDM images were acquired using one type of digital 

mammography machines (Selenia Dimensions made by the 

Hologic Company), which have a fixed pixel size of 70𝜇𝑚 in 

order to detect microcalcifications. Since in this study, we 

only focus on classification of soft tissue mass type lesions, all 

images are thus subsampled using a pixel averaging method 

with a 5 × 5 pixel frame, so that the pixel size of the 

subsampled images increases to 0.35mm. This subsample 

method has been used and reported in many of our previous 

CAD studies (i.e., [13, 14]). Additionally, in this dataset, the 

majority of cases have two craniocaudal (CC) and 

mediolateral oblique (MLO) view mammograms of either left 

or right breast in which the suspicious lesions are detected by 

the radiologists, while small fraction of cases just have one CC 

or MLO image in which the lesions were detected. Overall, 

1,197 images depicting malignant lesions and 1,302 images 

depicting benign lesions are available in this image dataset. 

All lesion centers are visually marked by the radiologists using 

a custom-designed interactive graphic user interface (GUI) 

tool. The marked lesion centers are recorded and used as 

“ground-truth” to evaluate CAD performance [13].   

B. Initial Image Feature Pool with a High Dimensionality 

In developing CAD schemes to classify between malignant 

and benign breast lesions, many different approaches have 

been investigated and applied to compute image features 

TABLE I 
CASE NUMBER AND PERCENTAGE DISTRIBUTION OF PATIENTS AGE AND 

MAMMOGRAPHIC DENSITY RATED BY RADIOLOGISTS USING BIRADS 

GUIDELINES. 
 

Subgroup Malignant 
Cases 

Benign 
Cases 

Density 
BIRADS 

 
1 

 
25 (3.9%) 

 
58 (6.9%) 

 2 186 (28.8%) 262 (31.1%) 

 3 401 (62.3%) 502 (59.5%) 
p-value = 

0.576 
4 32 (5.0%) 21 (2.5%) 

Age of 
Patients  

(years old) 

 
 

A < 40 

 
 

11 (3.4%) 

 
 

71 (8.4%) 
 40 ≤ A < 50 109(19.2%) 158(18.7%) 

 50 ≤ A < 60 167(25.6%) 285(33.8%) 

 60 ≤ A < 70 180(24.4%) 192(22.8%) 

 70 ≤ A 177(27.4%) 137(16.3%) 
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including those computed from the segmented lesions [15], the 

fixed regions of interest (ROIs) [16] and the entire breast area 

[14]. Each approach has advantages and disadvantages. 

However, their classification performance may be quite 

comparable with an appropriate training and optimization 

process. Thus, since this study focus on investigating the 

feasibility and potential advantages of a new feature 

dimensionality reduction method of RPA, we will use a simple 

approach to compute the initial image features from both the 

fixed ROI and the segmented lesion regions. 

Since classification between malignant and benign lesions is 

a difficult task, which depends on optimal fusion of many 

image features related to tissue density heterogeneity, 

speculation of lesion boundary, as well as variation of 

surrounding tissues. Previous studies have demonstrated that 

statistics and texture features can be used to model these 

valuable image features including intensity, energy, 

uniformity, entropy, and statistical moments, etc. Thus, like 

most CAD schemes using the ROIs with a fixed size as 

classification targets (including the schemes using deep 

learning approaches [17]), this CAD scheme also focuses on 

using the statistics and texture-based image features computed 

from the defined ROIs and the segmented lesion regions. For 

this purpose, following methods are used to compute image 

features that are included in the initial feature pool. 

First, from a ROI of an input image, gray level difference 

method (GLDM) is used to compute the occurrence of the 

absolute difference between pairs of gray levels divided in a 

particularly defined distance in several directions. It is a 

practical way for modeling analytical texture features. The 

output of this function is four different probability 

distributions. For an image 𝐼(𝑚, 𝑛), we consider displacement 

in different directions like 𝛿(𝑑𝑥 , 𝑑𝑦), then 𝐼(𝑚, 𝑛) =

|𝐼(𝑚, 𝑛) − 𝐼(𝑚 + 𝑑𝑥 , 𝑛 + 𝑑𝑦)| estimates the absolute 

difference between gray levels, where 𝑑𝑥 , 𝑑𝑦 are integer 

values. Now it is possible to determine an estimated 

probability density function for 𝐼(𝑚, 𝑛) like 𝑓(. |𝛿) in which 

𝑓(𝑖|𝛿) = 𝑃(𝐼(𝑚, 𝑛) = 𝑖). It means for an image with 𝐿 gray 

levels, the probability density function is 𝐿-dimensional. The 

components in each index of the function show the probability 

of 𝐼(𝑚, 𝑛) with the same value of the index. In the proposed 

method implemented in this CAD study, we consider 𝑑𝑥 =
𝑑𝑦 = 11, which is calculated heuristically [18]. The 

probability functions are computed in four directions (𝜑 =
0, 𝜋/4, 𝜋/2, 3𝜋/4), which signifies that four probability 

functions are computed to provide the absolute differences in 

four primary directions that each of which is used for feature 

extraction. 

Second, a gray-level co-occurrence matrix (GLCM) 

estimates the second-order joint conditional probability 

density function. The GLCM carries information about the 

locations of pixels having similar gray level values, as well as 

the distance and angular spatial correlation over an image sub-

region. To establish the occurrence probability of pixels with 

the gray level of 𝑖, 𝑗 over an image along a given distance of 𝑑 

and a specific orientation of 𝜑, we have 𝑃(𝑖, 𝑗, 𝑑, 𝜑). In this 

way, the output matrix has a dimension of the gray levels (𝐿) 
of the image [19]. Like GLDM, we compute four co-

occurrence matrices in four cardinal directions (𝜑 = 0, 𝜋/4,
𝜋/2, 3𝜋/4). GLCM is rotation invariant. We combine the 

results of different angles in a summation mode to obtain the 

following probability density function for feature extraction, 

which is also normalized to reduce image dependence. 

𝑃(𝑖, 𝑗) =  ∑ 𝑃(𝑖, 𝑗, 𝑑 = 2, 𝜑)

𝜑=0,𝜋/4,𝜋/2,3𝜋/4

 

𝑃(𝑖, 𝑗) =
𝑃(𝑖, 𝑗)

∑ ∑ 𝑃(𝑖, 𝑗)𝑗𝑖

; 𝑖, 𝑗 = 1,2,3, … , 𝐿 

(1) 

Third, a gray level run length matrix (GLRLM) is another 

popular way to extract textural features. In each local area 

depicting suspicious breast lesion, a set of pixel values are 

searched within a predefined interval of the gray levels in 

several directions. They are defined as gray level runs. GLRM 

calculates the length of gray-level runs. The length of the run 

is the number of pixels within the run. In the ROI, spatial 

variation of the pixel values for benign and malignant lesions 

may be different, and gray level run is a proper way to 

delineate this variation. The output of a GLRM is a matrix 

with elements that express the number of runs in a particular 

gray level interval with a distinct length. Depending on the 

orientation of the run, different matrices can be formed [20]. 

We in this study consider four different directions (𝜑 = 0,
𝜋/4, 𝜋/2, 3𝜋/4) for GLRM calculations. Then, just like 

GLCM, GLRM is also rotation invariant. Thus, the output 

matrices of different angles in a summation mode are merged 

to generate one matrix. 

Fourth, in addition to the computing texture features from 

the ROI of the original image in the spatial domain, we also 

explore and conduct multiresolution analysis, which is a 

reliable way to make it possible to perform zooming concept 

through a wide range of sub-bands in more details [21]. 

Hence, textural features extracted from the multiresolution 

sub-bands manifest the difference in texture more clearly. 

Specifically, a wavelet transform is performed to extract 

image texture features. Wavelet decomposes an image into the 

sub-bands made with high-pass and low-pass filters in 

horizontal and vertical directions followed by a down-

sampling process. While down-sampling is suitable for noise 

cancelation and data compression, high-pass filters are 

beneficial to focus on edge, variations, and the deviation, 

which can show and quantify texture difference between 

benign and malignant lesions. For this purpose, we apply 2D 

Daubechies (Db4) wavelet on each ROI to get approximate 

and detailed coefficients. From the computed wavelet maps, a 

wide range of texture features is extracted from principal 

components of this domain. 

Moreover, analyzing geometry and boundary of the breast 

lesions and the neighboring area is another way to distinguish 

benign and malignant lesions. In general, benign lesions are 

typically round, smooth, convex shaped, with well-

circumscribed boundary, while malignant lesions tend to be 

much blurry, irregular, rough, with non-convex shapes [22]. 

Hence, we also extract and compute a group of features that 
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represent geometry and shape of lesion boundary contour. 

Then, we add all computed features as described above to 

create the initial pool of image features. 

C. Applying Random Projection Algorithm (RPA) to 

Generate Optimal Feature Vector 

Before using RPA to generate an optimal feature vector 

from the initial image feature pool, we first normalize each 

feature to make its value distribution between [0, 1] to reduce 

case-based dependency and weight all features equally. Thus, 

for each case, we have a feature vector of size 𝑑, which is 

valuable to determine that case based on the extracted features 

as a point in a 𝑑 dimensional space. For two points like 𝑋 =
(𝑥1, … , 𝑥𝑑), and 𝑌 = (𝑦1, … 𝑦𝑑), the distance in 𝑑 dimensional 

spaces define as: 

|𝑋 − 𝑌| = √∑(𝑥𝑗 − 𝑦𝑗)
2

𝑑

𝑗=1

 (2) 

In addition, it is also possible to define the volume 𝑉 of a 

sphere in a 𝑑 dimensional space as a function of its radius (𝑟) 
and the dimension of the space as (3). This equation is proved 

in [23]. 

𝑉(𝑑) =  
𝑟𝑑𝜋

𝑑
2

1
2
𝑑Γ(
𝑑
2
)
 (3) 

The matrix of features is normalized between [0, 1]. It 

means a sphere with 𝑟 = 1 can encompass all the data. An 

interesting fact about a unit-radius sphere is that as equation 

(4) shows, as the dimension increase, the volume goes to zero. 

Since 𝜋
𝑑

2  is an exponential of 
𝑑

2
, while growing rate of Γ(

𝑑

2
) is 

a factorial of 
𝑑

2
. At the same time, the maximum possible 

distance between two points stays at 2.  

lim
𝑑→∞

(
𝜋
𝑑
2

𝑑
2
Γ (
𝑑
2
)
) ≅ 0 (4) 

Moreover, based on the heavy-tailed distribution theorem, 

for a case like 𝑋 = (𝑥1, … , 𝑥𝑑) in the space of features, 

suppose with an acceptable approximation features are 

independent, or nearly perpendicular variables as mapped to 

different axes, with 𝐸(𝑥𝑖) = 𝑝𝑖, ∑ 𝑝𝑖 = 𝜇
𝑑
𝑖=1  and 𝐸|(𝑥𝑖 −

𝑝𝑖)
𝑘| ≤ 𝑝𝑖  for 𝑘 = 2,3, … , ⌊𝑡2/6𝜇⌋, then, the previous study 

[24] has proven that: 

𝑝𝑟𝑜𝑏(|∑𝑥𝑖 − 𝜇

𝑑

𝑖=1

| ≥ 𝑡) ≤ 𝑀𝑎𝑥 (3𝑒
−𝑡2

12𝜇, 4 × 2
−𝑡
𝑒 ) (5) 

We can perceive that the farther the value of 𝑡 increases, the 

smaller the chance of having a point out of that distance, 

which means that 𝑋 would be concentrated around the mean 

value. Overall, based on equations (4), and (5) with an 

acceptable approximation, all data are encompassed in a 

sphere of size one, and they are concentrated around their 

mean value. As a result, if the dimensionality is high, the 

volume of the sphere is close to zero. Hence, the contrast 

between the cases is not enough for a proper classification. 

Above analysis also indicates the more features included in 

the initial feature vector, the higher the dimension of the space 

is, and the more data is concentrated around the center, which 

makes it more difficult to have enough contrast between the 

features. A powerful technique to reduce the dimensionality 

while approximately preserves the distance between the 

points, which implies approximate preservation of the highest 

amount of information, is the key point that we are looking 

for. If we adopt a typical feature selection method and 

randomly select a k-dimensional sup-space of the initial 

feature vector, it is possible to prove that all the projected 

distances in the new space are within a determined scale-factor 

of the initial d-dimensional space [25]. Hence, although some 

redundant features are removed, the final accuracy may not 

increase, since contrast between the points may still be not 

enough to present a robust model. 

To address this issue, we take advantage of Johnson-

Lindenstrauss Lemma to optimize the feature space. Based on 

the idea of this lemma, for any 0 < 𝜖 < 1, and any number of 

cases as 𝑁, which are like the points in 𝑑-dimensional space 

(ℝ𝑑), if we assume 𝑘 as a positive integer, it can be computed 

as: 

𝑘 ≥ 4
ln𝑁

(
𝜖2

2
−
𝜖3

3
)
 (6) 

Then, for any set 𝑉 of 𝑁 points in ℝ𝑑, for all 𝑢, 𝑣 ∈ 𝑉, it is 

possible to prove that there is a map, or random projection 

function like 𝑓:ℝ𝑑 → ℝ𝑘, which preserves the distance in the 

following approximation [26], which is known as Restricted 

Isometry Property(RIP): 

(1 −  𝜖)|𝑢 − 𝑣|2 ≤ |𝑓(𝑢) − 𝑓(𝑣)|2

≤ (1 + 𝜖)|𝑢 − 𝑣|2 
(7) 

Another arrangement of this formula is like: 

|𝑓(𝑢) − 𝑓(𝑣)|2

(1 +  𝜖)
≤ |𝑢 − 𝑣|2 ≤

|𝑓(𝑢) − 𝑓(𝑣)|2

(1 − 𝜖)
 (8) 

As these formulas show the distance between the set of 

points in the lower-dimension space is approximately close to 

the distance in high-dimensional space. This Lemma states 

that it is possible to project a set of points from a high-

dimensional space into a lower dimensional space, while the 

distances between the points are nearly preserved. 

It implies that if we project the initial group of features into 

a space with a lower-dimensional subspace using the random 

projection method, the distances between points are preserved 

under better contrast. This may help better classify between 

two feature classes representing benign and malignant lesions 

with low risk of overfitting.  

It should be noted that for an input matrix of features like 

Χ ∈ ℝ𝑛×𝑑, 𝑛 and 𝑑 represent the number of training samples 

and features, respectively. Unlike the principal component 

analysis (PCA) that assumes relationship among feature 

variables are linear and intends to generate new orthogonal 

features, RPA aims to preserve distance of the points (training 

samples) while reducing the space dimensionality. Thus, using 

RPA will create a subspace Χ̃ = ΧR in which 𝑅 satisfies the 

RIP condition, and 𝑅 ∈ ℝ𝑑×𝑘, Χ̃ ∈ ℝ𝑛×𝑘. Since the subspace's 
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geometry is preserved, previous studies [27,28] proved that a 

SVM based machine learning classifier could better preserve 

the characteristics of the image dataset to build the optimal 

hyperplane and thus reduce the generalization error. In other 

words, if an SVM classifier makes the resulting margin 𝛾∗ =
1
‖𝑤∗‖2⁄  for its optimal hyperplane (𝑤∗) after solving the 

optimization problem on the initial feature space of Χ, and on 

the subspace of Χ̃, it makes the resulting margin 𝛾̃∗ =
1
‖𝑤̃∗‖2⁄  for the respective optimized hyperplane (𝑤̃∗). 

Another study [29] proved that hinge loss (for margin 𝛾̃∗) of 

the classifier trained on the subspace data (Χ̃) is less than that 

(𝛾∗) of the classifier trained on the original data (Χ). Strictly 

speaking, the trained classifier's error rate on the optimized 

subspace generated using RPA is lower than that of the 

classifier trained on the original space. It indicates that 

training a machine learning classifier using an optimal 

subspace under RIP condition can build a more accurate and 

robust model for the classification purpose 

In this study, we investigate and demonstrate whether using 

RPA can yield better result as comparable to other popular 

feature dimensionality reduction approaches (i.e., PCA). 

D. Experiment of Feature Combination and Dimensionality 

Reduction 

First, the proposed CAD scheme applies an image 

preprocessing step to the whole images in the dataset to read 

them one by one, and based on the lesion centers pre-marked 

by the radiologists to extract a squared ROI area in which the 

centers of the lesion and ROI overlap. In order to identify the 

optimal size of the ROIs, a heuristic method is applied to 

select and analyze ROI size. Basically, the different ROI sizes 

(i.e., in the range from 128×128 to 180×180 pixels) are 

examined and compared. From the experiments, we observe 

that the ROIs with size of 150×150 pixels generate the best 

classification results applying to this large and diverse dataset, 

which reveals that this is the most efficient size to cover all 

mass lesions included in our diverse dataset, which 

corresponds to use the ROI of 52.5 × 52.5𝑚𝑚2. Fig. 1 shows 

examples of 4 ROIs depicting two malignant lesions and two 

benign lesions. After ROI determination, all the images in the 

dataset are saved in Portable Network Graphics (PNG) format 

with 16 bits in the lossless mode for the feature extraction 

phase. 

Next, the CAD scheme is applied to segment lesion from 

the background. For this process, CAD applies an unsharp 

masking method in which a low-pass filter with a window-size 

of 30 is first applied to filter the whole ROI. Next, CAD 

computes the absolute pixel value difference between the 

original ROI and the filtered ROI to produce a new image map 

that highlights the lesion and other regions (or blobs) with 

locally higher and heterogeneous tissue density. Then, CAD 

applies morphological filters (i.e., opening and closing) to 

delete the small and isolated blobs (with the pixel members 

less than 50), and repair boundary contour of the lesion and 

other remaining blobs with higher tissue density. Since in this 

study, the user clicks the lesion center and the ROI is extracted 

around this clicked point, the blob located in the center of ROI 

represents the segmented lesion. Fig. 2 shows an example of 

applying this algorithm to locate and segment suspicious 

lesion from the surrounding tissue background. 

After image segmentation, CAD scheme computes several 

sets of the relevant image features. The first group of features 

a) 

 

b) 

 

c) 

 

d) 

 

Fig. 1.  Example of 4 extracted ROIs with the detected suspicious soft-

tissue masses (lesions) in ROI center. a,b) 2 ROIs involving malignant 

lesions and c,d) 2 ROIs involving benign lesions. 

 

   
(a) (b) (c) 

   

(d) (e) (f) 

Fig. 2.  Example to illustrate lesion segmentation, which include a) the 

original ROI, b) absolute difference of ROI from low-pass filtered version, c) 

combination of (a) and (b) which gives the suspicious regions better contrast 

to the background, d) output of morphological filtering, e) blob with the 

largest size is selected (a binary version of the lesion), and f) finally 
segmented lesion area. It is output of mapping (e) to (a). 

 
 

  

TABLE II 

LIST OF THE COMPUTED FEATURES ON ROI AREA. 

Feature 

category 

Feature Description 

Density 

related 

features 

1.Mean, 2. variance, 3. skewness, 4. kurtosis, 5. entropy, 

6. correlation, 7. energy, 8. root mean square level, 9. 

uniformity, 10. max, 11. min, 12. median, 13. range, 14. 

mean absolute deviation, 15. Contrast, 16. homogeneity, 

17. smoothness, 18. inverse difference movement, 19. 

suspicious regions volume, 20. standard deviation. 
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are the pixel value (or density) related statistics features as 

summarized in Table II. These 20 statistics features are 

repeatedly computed from three types of images namely, 1) 

the entire ROI of the original images (as shown in Fig. 2(a)), 

2) the segmented lesion region (as shown in Fig. 2(f)), and 3) 

all highly dense and heterogeneous tissue blobs (as shown in 

Fig. 2(d)). Thus, this group of features includes 60 statistics 

features. 

The second group of features is computed from the GLRLM 

matrix of the ROI area. For this purpose, 16 different 

quantization levels are considered to calculate all probability 

functions in four different directions from the histograms. 

After combining the probability functions, on rotation 

invariance version of them, the following group of features is 

computed. Features are short-run emphasis, long-run 

emphasis, gray level non-uniformity, run percentage, run-

length non-uniformity, low gray level run emphasis, and high 

gray level run emphasis. Hence, this group of features includes 

seven GLRM-based features. 

The third group of features includes GLDM based features 

computed from the entire ROI. Specifically, we select a 

distance value of 11 pixels for the inter-sample distance 

calculation. CAD computes four different probability density 

functions (PDFs) based on the image histogram calculation in 

different directions. The PDF (𝑝) with (𝜇) as the mean of the 

population, standard deviation, root mean square level, and the 

first four statistical moments (𝑛 = 1, 2, 3, 4) with the 

following equation are calculated as features. 

𝑚̂𝑛 = ∑𝑝𝑖(𝑥𝑖 −  𝜇)
𝑛

𝑁

𝑖=1

 (9) 

It is an unbiased estimate of nth moment possible to  

calculate by: 

𝑚𝑛 = ∫ 𝑝(𝑥)𝑥𝑛𝑑𝑥

∞

−∞

 (10) 

As shown in equation 10, 𝑝(𝑥) is weighted by 𝑥𝑛. Hence, 

any change in the р(x) is polynomially reinforced in the 

statistical moments. Thus, any difference in the four PDFs 

computed from malignant lesions is likely to be polynomially 

reinforced in the statistical moments of the computed 

coefficients. Six features from each of four GLDM based 

PDFs make this feature group, which has total 24 features. 

The fourth group of features computes GLCM based texture 

feature. Based on the method proposed in the previous study 

[30], our CAD scheme generates a matrix of 44 textural 

features computed from GLCM matrix based on all GLCM 

based equations proposed in [19]. In this way any properties of 

the GLCM matrix proper for the classification purpose is 

granted. Hence, this group contains 44 features computed 

from the entire ROI. 

The fifth group of features includes wavelet-based features. 

The Daubechies wavelet decomposition is accomplished on 

the original ROI (i.e., Fig. 2(a)). Fig. 3 shows a block diagram 

of the wavelet-based feature extraction procedure. The last 

four sub-bands of wavelet transform are used to build a matrix 

of four sub-bands in which principal components of this 

matrix are driven for feature extraction and computation. The 

computed features are listed in Table III. We also repeat the 

same process to compute wavelet-based feature from the 

segmented lesion (i.e., Fig. 2(f)). As a result, this feature 

group includes 26 wavelet-based image features. 

Last, to address the differences between morphological and 

structural characteristics of benign and malignant lesions, 

another group of geometrical based features is derived and 

computed from the segmented lesion region. For this purpose, 

TABLE III 

LIST OF WAVELET-BASED FEATURES. 

Feature 

category 

Feature Description  

Wavelet-

based 

features 

1. Contrast, 2. Correlation, 3. Energy, 4. Homogeneity, 5. 

Mean, 6. Standard deviation, 7. Entropy, 8. Root mean 

square level, 9. Variance, 10. Smoothness, 11. Kurtosis, 

12. Skewness, 13. IDM 

 
TABLE IV 

LIST OF GEOMETRICAL FEATURES. 

Feature 

category 

Feature Description  

Geometrical 

based 

features 

1. Area, 2. Major Axis Length, 3. Minor Axis Length, 4. 

Eccentricity, 5. Orientation, 6. Convex Area, 7. 
Circularity, 8. Filled Area, 9. Euler Number, 10. 

Equivalent Diameter, 11. Solidity, 12. Extent, 13. 

Perimeter, 14. Perimeter Old,15. Max Feret Diameter,16. 
Max Feret Angle,18. Min Feret Diameter,19. Min Feret 

Angle, 20. Roundness Ratio 

 

Input Image 

DWT based feature 

extraction 

  

HL1 

LH1 HH1 

 HL2 

LH2 HH2 

LH3 HH3 

HL3  LL3 

DWT PCA ([LL3, HL3, LH3, HH3]) 

Fig 3.  Wavelet based feature extraction. Wavelet decomposition is applied three times to make the images compress as possible. Then PCA is adopted as 

another way of data compression. 
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a binary version of the lesion, like what we showed in Fig. 2 

(e), is first segmented from the ROI area. Then, all the 

properties listed in Table IV are calculated from the 

segmented lesion region in the image using the equations 

reported in [31]. 

By combining all features computed in above 6 groups, 

CAD scheme creates an initial pool of 181 image features. 

Then, RPA is applied to reduce feature dimensionality and 

generate an optimal feature vector. For this purpose, we utilize 

sparse random matrix as the projection function to achieve the 

criteria as defined in equation (7). Sparse random matrix is a 

memory efficient and fast computing way of projecting data, 

which guarantees the embedding quality of this idea. To do so, 

if we define 𝑠 = 1/𝑑𝑒𝑛𝑠𝑖𝑡𝑦, in which 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 defines ratio of 

non-zero components in the RPA, the components of the 

matrix as random matrix elements (RME) are:  

𝑅𝑀𝐸 =  

{
 
 
 

 
 
 −√

𝑠

𝑛𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠
,                          1 2𝑠⁄

0 ,          𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦    1 − 1 𝑠⁄

√
𝑠

𝑛𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠
,                              1 2𝑠⁄

 (11) 

In this process, we select 𝑛𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 , which is the size of the 

projected subspace. As recommended in [32], we consider 

number of non-zero elements to the minimum density, which 

is: 1
√𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠⁄  . 

E. Development and Evaluation of Machine Learning Model 

After processing images and computing image features 

from all 1,197 ROIs depicting malignant lesions and 1,302 

ROIs depicting benign lesions, we build machine learning 

model to classify between malignant and benign lesions by 

taking following steps or measures. Fig. 4 shows a block 

diagram of the machine learning model along with the training  

and testing process. First, although many machine learning 

models (i.e., artificial neural networks, K-nearest 

neighborhood network, Bayesian belief network, support 

vector machine) have been investigated and used to develop 

CAD schemes, based on our previous research experience 

[14], we adopt the support vector machine (SVM) to train a 

multi-feature fusion based machine leaning model to predict 

the likelihood of lesions being malignancy in this study. Under 

a grid search and hyperparameter analyses, linear kernel 

implemented in SVM model can achieve a low computational 

cost and high robustness in prediction results as well. 

Second, we apply the RPA to reduce the dimensionality of 

image feature space and map to the most efficient feature 

vector as input features of the SVM model. To demonstrate 

the potential advantages of using RPA in developing machine 

learning models, we build and compare 5 SVM models, which 

using all 181 image features included in the initial feature 

pool, and embedding 4 other feature dimensionality reduction 

methods including (1) random projection algorithm (RPA), (2) 

principle component analyses (PCA), (3) nonnegative matrix 

factorization (NMF), and (4) Chi-squared (Chi2).   

Third, to increase size and diversity of training cases, as 

well as reduce the potential bias in case partitions, we use a 

leave-one-case-out (LOCO) based cross-validation method to 

train SVM model and evaluate its performance. All feature 

dimensionality reduction methods discussed in the second step 

are also embedded in this LOCO iteration process to train the 

SVM. This can diminish the potential bias in the process of 

feature dimensionality reduction and machine learning model 

training as demonstrated in our previous study [33]. When the 

RPA is embedded in the LOCO based model training process, 

it helps generate a feature vector independent of the test case. 

Thus, the test case is unknown to both RPA and SVM model 

training process. In this way, in each LOCO iteration cycle, 

the trained SVM model is tested on a truly independent test 

case by generating an unbiased classification score for the test 

case. As a result, all SVM-generated classification scores are 

independent of the training data. In addition, other N-fold 

cross-validation methods (i.e., 𝑁 = 3, 5, 10) are also tested 

and compared with LOCO method in the study. 

Fourth, since majority of lesions detected in two ROIs from 

CC and MLO view mammograms, in the LOCO process, two 

ROIs representing the same lesion will be grouped together to 

be used for either training or validation to avoid potential bias. 

After training, ROIs in one remaining case will be used to test 

the machine learning model that generates a classification 

score to indicate the likelihood of each testing ROI depicting a 

malignant lesion. The score ranges from 0 to 1. The higher 

score indicates a higher risk of being malignant. In addition to 

the classification score of each ROI, a case-based likelihood 

Image Data 
Feature 

Engineering 

Training Cases 

Test Case 

Machine 

Learning 

Model 

CC view 

MLO view 

𝑝𝑟𝑒𝑑2 =  𝑠𝑐𝑜𝑟𝑒2 

𝑝𝑟𝑒𝑑1 = 𝑠𝑐𝑜𝑟𝑒1 

𝐶𝑎𝑠𝑒𝑠𝑐𝑜𝑟𝑒 =
𝑠𝑐𝑜𝑟𝑒1 + 𝑠𝑐𝑜𝑟𝑒2

2
     

𝑦𝑖𝑒𝑙𝑑𝑠
→      {

𝑏𝑒𝑛𝑖𝑔𝑛  𝑖𝑓 𝐶𝑎𝑠𝑒𝑠𝑐𝑜𝑟𝑒 ≤ 0.5

𝑚𝑎𝑙𝑖𝑔𝑛𝑎𝑛𝑡 𝑖𝑓 𝐶𝑎𝑠𝑒𝑠𝑐𝑜𝑟𝑒 > 0.5
 

CC view 

MLO view 

Fig 4.   Illustration of the overall classification flow of the CAD scheme developed and tested in this study. 
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score is also generated by fusion of two scores of two ROIs 

representing the same lesion depicting on CC and MLO view 

mammograms.  

Fifth, a receiver operating characteristic (ROC) method is 

applied in the data analysis. Area under ROC curve (AUC) is 

computed from the ROC curve and utilized as an evaluation 

index to evaluate and compare performance of each SVM 

model to classify between the malignant and benign lesions. 

Then, we also apply an operating threshold of T = 0.5 on the 

SVM-generated classification scores to classify or divide all 

testing cases into two classes of malignant and benign cases. 

By comparing to the available ground-truth, a confusion 

matrix for the classification results is determined for each 

SVM. From the confusion matrix, we compute classification 

accuracy, sensitivity, specificity, and odds ratio (OR) of each 

SVM model based on both lesion region and case. In the 

region-based performance evaluation, all lesion region are 

considered independent, while in the case-based performance 

evaluation, the average classification score of two matched 

lesion regions (if the lesions are detected and marked by 

radiologists in both CC and MLO view) is computed and used. 

In this study, all pre-processing and feature extraction steps to 

make the matrix of features are conducted using MATLAB 

R2019a package. 

III. RESULTS 

Fig. 5 shows a malignant case as an example in which the 

lesion center is annotated by radiologists in both CC and MLO 

view mammograms. Based on the marked center, we plot two 

square areas on two images in which image features are 

computed by the CAD scheme. Using the whole feature vector 

of 181 image features, the SVM-model generates the 

following classification scores to predict the likelihood of  two 

lesion regions on two view images being malignant, which are 

𝑆𝐶𝐶𝑣𝑖𝑒𝑤 = 0.685, and 𝑆𝑀𝐿𝑂𝑣𝑖𝑒𝑤 = 0.291. The case-based 

classification score is 𝑆𝐶𝑎𝑠𝑒 = 0.488. When using the feature 

vectors generated by the RPA, the SVM-model generates two 

new classification scores of these two lesion regions, which 

are 𝑆𝐶𝐶𝑣𝑖𝑒𝑤 = 0.817, and 𝑆𝑀𝐿𝑂𝑣𝑖𝑒𝑤 = 0.375. Thus, the case-

based classification score is 𝑆𝐶𝑎𝑠𝑒 = 0.596. As a result, using 

the SVM model trained using all 181 image features 

misclassifies this malignant lesion into benign when an 

operating threshold (T = 0.5) is applied, while the SVM model 

trained using the embedded RPA increases the classification 

scores for both lesion regions depicting on CC and MLO view 

images. As a result, it is correctly classified as malignant with 

the case-based classification score greater than the operating 

threshold. 

Table V summarizes the performance of using the original 

features computed in 6 categories to classify between the 

malignant and benign lesions. As shown in this table, using 

the group of statistical features yields the highest classification 

accuracy among 6 categories of features. Fig. 6 shows a curve 

indicating the variation trend of the AUC values of the SVM 

models trained and tested using different number of features 

(ranging from 50 to 100) generated by the proposed RPA. The 

trend result indicates that using a reduced feature 

dimensionality with 80 features, the SVM yields the highest 

AUC value of 0.84. 

Table VI shows and compares the average number of the 

input features used to train 5 SVM models with and without 

embedding different feature dimensionality reduction 

methods, lesion region-based and case-based classification 

performance of AUC values. When embedding a feature 

dimensionality reduction algorithm, the size of feature vectors 

in different LOCO-based SVM model training and validation 

cycle may vary. Table VI shows that average number of 

features are reduced from original 181 features to 100 or less. 

When using RPA, the average number of features is 80. From 

both Table VI and Fig. 7, which show and compare the 

corresponding AUC values and ROC curves, we observe that 

a SVM model trained using an embedded RPA feature 

dimensionality reduction method produces the statistically 

significantly higher or improved classification performance 

including a case-based AUC value of 0.84±0.01 as comparing 

to all other SVM model (p < 0.05) including the SVM trained 

using the initial feature pool of 181 features and other SVM 

models embedded with other three feature dimensionality 

reduction methods namely, principle component analyses 

(PCA), nonnegative matrix factorization (NMF) and Chi-

squared (Chi2) in the classification model training process. In 

addition, the data in Table VI and ROC curves in Fig. 7 also 

indicate that the case-based lesion classification yields higher 

performance than the region-based classification performance, 

which indicates that using and combining image features 

computed from two-view mammograms has advantages. 

 

Fig 5.  A malignant case annotated by radiologists in both CC and MLO 

views. The annotated mass is squared in each view.  

 
TABLE V 

ACCURACY OF THE SVM MODELS FOR CASE-BASED CLASSIFICATION 

BASED ON SIX DIFFERENT CATEGORIES OF THE ORIGINAL FEATURES. 

Feature category Number of features Accuracy (%) 

Statistical features 60 66 

GLRLM 7 59 

GLDM 24 56 

GLCM 44 61 

Wavelet based 26 60 

Geometrical based 20 63 
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Table VII presents 5 confusion matrices of lesion case-

based classification using 5 SVM-models after applying the 

operating threshold (T = 0.5). Based on this table, several 

lesion classification performance indices like sensitivity, 

specificity, and odds ratio are measured and shown in Table 

VIII. This table also shows that the SVM model trained based 

on the feature vector generated by the RPA yields the highest 

classification accuracy comparing to the other 4 SVM models 

trained using feature vectors generated either based on other 

three feature dimensionality reduction methods or the original 

feature pool of 181 features. 

 

Fig. 6.  A trend of the case-based classification AUC values generated by the 

SVM models trained using different number of features (NF) generated by 

the RPA. 

TABLE VI 

SUMMARY OF AVERAGE NUMBER OF IMAGE FEATURES USED IN 5 

DIFFERENT SVM MODELS AND CLASSIFICATION PERFORMANCE 

(AUC) BASED ON BOTH REGION AND CASE-BASED LESION 

CLASSIFICATION. 𝑝 VALUE COMPARES RESULTS OF EACH MODEL TO 

THE LAST ONE (RPA) AS THE OPTIMAL ONE. 

Feature  

sub-groups 

Number of 
features 

AUC 
𝒑 

value 

Original features, region 

based 
181 0.72  0.004 

Original features, case 

based 
181 0.74  0.005 

NMF, region based 100 0.73  0.005 

NMF, case based 100 0.77 0.023 

Chi2, region based 76 0.73  0.005 

Chi2, case based 76 0.75  0.015 

PCA, region based 83 0.75  0.011 

PCA, case based 83 0.79  0.041 

RPA, region based 80 0.78 0.035 

RPA, case based 80 0.84 --- 
 

 

 
Fig. 7.  Comparison of 10 ROC curves generated using 5 SVM models and 2 
scoring (region and case-based) methods to classify between malignant and 

benign lesion regions or cases. 

  

TABLE VII 

FIVE CONFUSION MATRICES OF CASE-BASED LESION CLASSIFICATION 

USING 5 DIFFERENT SVM MODELS TO CLASSIFY BETWEEN BENIGN AND 

MALIGNANT CASES. 

Feature 

Group 
Predicted 

Actual 

Positive 

Actual 

Negative 

Original 
features 

Positive 399 212 

Negative 245 631 

NMF 
Positive 406 173 

Negative 238 670 

Chi2 
Positive 405 194 

Negative 239 649 

PCA 
Positive 436 197 

Negative 208 646 

RPA 
Positive 452 177 

Negative 192 666 
 

 
TABLE VIII 

SUMMARY OF THE LESION CASE-BASED CLASSIFICATION ACCURACY, 

SENSITIVITY, SPECIFICITY, AND ODD RATIO OF USING 5 SVMS 

TRAINED USING DIFFERENT GROUPS OF OPTIMIZED FEATURES. 

Feature 

sub-

group 

Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Odds 

Ratio 

Original 

features 

69.3 62.0 75.0 4.85 

NMF 72.4 63.1 79.5 6.61 

Chi2 70.9 63.0 77.1 5.67 

PCA 72.8 68.0 76.6 6.87 

RPA 75.2 70.2 79.0 8.86 
 

 
TABLE IX 

SUMMARY OF THE CASE-BASED LESION CLASSIFICATION FOR THE 

PROPOSED METHOD (RPA) UNDER DIFFERENT CROSS VALIDATION 

(CV) TECHNIQUES. 

CV AUC Accuracy 

LOCO 0.84±0.04 75.2±4 

10-fold 0.83±0.05 74.0±4 

5-fold 0.82±0.07 73.1±5 

3-fold 0.80±0.10 70.8±9 
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Table IX shows and compares the classification results 

using four different cross-validation methods (𝑁 = 3, 5, 10 

and LOCO). The results show two trends of performance 

decrease and standard deviation increase (in both AUC and 

accuracy) as the number of folds decreases from the maximum 

folds (LOCO) to the smallest folds (𝑁 = 3). This indicates 

that using LOCO yields not only the highest performance, but 

also probably highest robustness due to the smallest standard 

deviation. 

Additionally, to assess the reduction of feature redundancy 

after applying RPA, we create a feature correlation matrix, 

𝑐𝑜𝑟𝑟(𝑖, 𝑗) with the number of 𝑀 features. Then, we compute a 

mean absolute value of the correlation matrix: 

𝑚𝑒𝑎𝑛 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =  
1

𝑀 ×𝑀
∑|𝑐𝑜𝑟𝑟(𝑖, 𝑗)|

𝑀

𝑖,𝑗=1

 (12) 

Two mean values of correlation computed from two 

correlation matrices generated using the feature space (or 

pools) before and after applying RPA are 0.49 and 0.31, 

respectively, which indicates that feature correlation 

coefficients after using RPA is reduced. Thus, using RPA can 

reduces not only dimensionality of feature space, but also 

redundancy of the feature space. 

Last, the computational processing tasks of applying RPA 

to generate optimal features and train the SVM model are 

performed using a Dell computer (Processor: Intel(R) Xeon 

CPU E5-1603 v3, 2.8 GHz, and 16 GB RAM) and Python-

based software package. For cross validation process we use 

Sklearn-model library. For example, in the 10-fold cross 

validation, the average computation time to complete one 

cross-validation iteration is approximately 38.12 seconds.    

IV. DISCUSSION 

Mammography is a popular imaging modality used in breast 

cancer screening and early cancer detection. However, due to 

the heterogeneity of breast lesions and dense fibro-glandular 

tissue, it is difficult for radiologists to accurately predict or 

determine the likelihood of the detected suspicious lesions 

being malignant. As a result, mammography screening 

generates high false-positive recall rates and majority of 

biopsies are approved to be benign [34]. Thus, to help increase 

specificity of breast lesion classification and reduce the 

unnecessary biopsies, developing CAD schemes to assist 

radiologists more accurately and consistently classifying 

between malignant and benign breast lesions remains an active 

research topic [35]. In this study, we develop and assess a new 

CAD scheme of mammograms to predict the likelihood of the 

detected suspicious breast lesions being malignant. This study 

has following unique characteristics as comparing to other 

previous CAD studies reported in the literature.  

First, previous CAD schemes of mammograms computed 

image features from either the segmented lesion regions or the 

regions with a fixed size (i.e., squared ROIs to cover lesions 

with varying sizes). Both approaches have advantages and 

disadvantages. Due to the difficulty to accurately segment 

subtle lesions with fuzzy boundary, the image features 

computed from the automatically segmented lesions may not 

be accurate or reproducible, which reduces the accuracy of the 

computed image features to represent actual lesion regions. 

When using the fixed ROIs (including most deep learning 

based CAD schemes [17, 36]), although it can avoid the 

potential error in lesion segmentation, it may lose and reduce 

the weight of the image features that are more relevant to the 

lesions due to the potential heavy influence of irregular fibro-

glandular tissue distribution surrounding the lesions with 

varying sizes. In this study, we tested a new approach that 

combines image features computed from both a fixed ROI and 

the segmented lesion region. In addition, comparing to the 

most of previous CAD studies as surveyed in the previous 

study, which used several hundreds of malignant and benign 

lesion regions [37], we assemble a much larger image dataset 

with 1,847 cases or 2,499 lesion region (including 1,197 

malignant lesion regions and 1,302 benign lesion regions). 

Despite using a much larger image dataset, this new CAD 

scheme yields a higher classification performance (AUC = 

0.84±0.01) as comparing to AUC of 0.78 to 0.82 reported in 

our previous CAD studies that using much smaller image 

dataset (<500 malignant and benign ROIs or images) [17, 38]. 

Thus, although it may be difficult to directly compare 

performance of CAD schemes tested using different image 

datasets as surveyed in [37], we believe that our new approach 

to combine image features computed from both a fixed ROI 

and the segmented lesion region has advantages to partially 

compensate the potential lesion segmentation error and 

misrepresentation of the lesions related image features, and 

enable to achieve an improved or very comparable 

classification performance. 

Second, since identifying a small, but effective and non-

redundant image feature vector plays an important role in 

CAD development to train machine learning classifiers or 

models, many feature selection or dimensionality reduction 

methods have been investigated and applied in previous 

studies. Although these methods can exclude many redundant 

and low-performed or irrelevant features in the initial pool of 

features, the challenge of how to build a small feature vector 

with orthogonal feature components to represent the complex 

and non-linear image feature space remains. For the first time, 

we in this study introduce the RPA to the medical imaging 

informatics field to develop CAD scheme. RPA is a technique 

that maximally preserves the distance between the sub-set of 

points in the lower-dimension space. As explained in the 

Introduction section, in the lower space under preserving the 

distance between points, classification is much more robust 

with low risk of overfitting. This is not only approved by the 

simulation or application results reported in previous studies, 

it is also confirmed by this study. The results in Table VI show 

that by using the optimal feature vectors generated by RPA, 

the SVM model yields significantly higher classification 

performance in comparison with other SVM models trained 

using either all initial features or other feature vectors 

generated by other three popular feature selection and 

dimensionality reduction methods. Using the RPA boosts the 

AUC value from 0.72 to 0.78 in comparison with the original 

feature vector in the lesion region-based analysis, and from 
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0.74 to 0.84 in the lesion case-base evaluation, which also 

enhances the classification accuracy from 69.3% to 75.2%, 

and approximately doubling the odds ratio from 4.85 to 8.86 

(Table VIII). Thus, the study results confirm that RPA is a 

promising technique applicable to generate optimal feature 

vectors for training machine learning models used in CAD of 

medical images. 

Third, since the heterogeneity of breast lesions and surround 

fibro-glandular tissues distributed in 3D volumetric space, the 

segmented lesion shape and computed image features often 

vary significantly in two projection images (CC and MLO 

view), we investigate and evaluate CAD performance based 

on single lesion regions and the combined lesion cases if two 

images of CC and MLO views were available and the lesions 

are detectable on two view images. Table VI shows and 

compares lesion region-based and case-based classification 

performance of 5 SVM models. The result data clearly 

indicates that instead of just selecting one lesion region for 

likelihood prediction, it would be much more accurate when 

the scheme processes and examines two lesion regions 

depicting on both CC and MLO view images. For example, 

when using the SVM trained with the feature vectors 

generated by the RPA, the lesion case-based classification 

performance increases 7.7% in AUC value from 0.78 to 0.84 

as comparing to the region-based performance evaluation. 

Last, although the study has tested a new CAD development 

method using a RPA to generate optimal feature vector and 

yielded encouraging results to classify between the malignant 

and benign breast lesions, we realize that the reported study 

results are made on a laboratory-based retrospective image 

data analysis process with several limitations. First, although 

the dataset used in this study is relatively large and diverse, 

whether this dataset can sufficiently represent real clinical 

environment or breast cancer population is unknown or not 

tested. All FFDM images were acquired using one type of 

digital mammography machines. Due to the difference of the 

image characteristics (i.e., contrast-to-noise ratio) between 

FFDM machines made by different vendors, the CAD scheme 

developed in this study may not be directly and optimally 

applicable to mammograms produced by other types of FFDM 

machines. However, we believe that the concept demonstrated 

in this study is valid. Thus, the similar CAD schemes can be 

easily retrained or fine-tuned using a new set of digital 

mammograms acquired using other different types of FFDM 

machines of interest. Second, in this retrospective study, the 

image dataset has a higher ratio between the malignant and 

benign lesions, which is different from the false-positive recall 

rates in the clinical practices. Thus, the reported AUC values 

may also be different from the real clinical practice, which 

needs to be further tested in future prospective clinical studies. 

Third, in the initial pool of features, we only extracted a 

limited number of 181 statistics, textural and geometrical 

features, which are much less than the number of features 

computed based on recently developed radiomics concept and 

technology [3, 4]. Thus, more texture features can be explored 

in future studies to increase diversity of the initial feature pool, 

which may also increase the chance of selecting or generating 

more optimal features. Additionally, many deep transfer 

learning models have been recently tested as feature extractors 

in medical imaging field, which produce much larger number 

of features than the radiomics approaches. Thus, whether 

using RPA can also help significantly reduce dimensionality 

of these feature extractors to more effectively and robustly 

train or build the final classification layer of the deep leaning 

models should be investigated in future studies.  

V. CONCLUSION 

In summary, due to the difference between human vision 

and computer vision, it is often difficult to accurately identify 

a small set of optimal and non-redundant features computed 

by the CAD schemes of medical images. In this study, we 

investigate feasibility of applying a new approach based on the 

random projection algorithm (RPA) to generate the optimal 

feature vectors for training machine learning models 

implemented in the CAD schemes of mammograms to classify 

between malignant and benign breast lesions. Study results 

indicate that applying this RPA approach creates a more 

compact feature space that can reduce feature correlation or 

redundancy. By comparing with other three popular feature 

dimensionality reduction methods, the study results also 

demonstrate that using RPA enables to generate an optimal 

feature vector to build a machine learning model, which yields 

significantly higher classification performance. In addition, 

since building an optimal feature vector is an important 

precondition of building optimal machine learning models, the 

new method demonstrated in this study is not only limited to 

CAD schemes of mammograms, it can also be adopted and 

used by researchers to develop and optimize CAD schemes of 

other types of medical images to detect and diagnose different 

types of cancers or diseases in the future  
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