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Abstract— Objective: Since computer-aided diagnosis (CAD)
schemes of medical images usually computes large number of
image features, which creates a challenge of how to identify a
small and optimal feature vector to build robust machine
learning models, the objective of this study is to investigate
feasibility of applying a random projection algorithm (RPA) to
build an optimal feature vector from the initially CAD-generated
large feature pool and improve performance of machine learning
model. Methods: We assemble a retrospective dataset involving
1,487 cases of mammograms in which 644 cases have confirmed
malignant mass lesions and 843 have benign lesions. A CAD
scheme is first applied to segment mass regions and initially
compute 181 features. Then, support vector machine (SVM)
models embedded with several feature dimensionality reduction
methods are built to predict likelihood of lesions being malignant.
All SVM models are trained and tested using a leave-one-case-out
cross-validation method. SVM generates a likelihood score of
each segmented mass region depicting on one-view mammogram.
By fusion of two scores of the same mass depicting on two-view
mammograms, a case-based likelihood score is also evaluated.
Results: Comparing with the principle component analyses,
nonnegative matrix factorization, and Chi-squared methods,
SVM embedded with RPA yielded a significantly higher case-
based lesion classification performance with the area under ROC
curve of 0.84+0.01 (p<0.02). Conclusion: The study demonstrates
that RPA is a promising method to generate optimal feature
vectors and improve SVM performance. Significance: This study
presents a new method to develop CAD schemes with
significantly higher and robust performance.

Index Terms— breast cancer diagnosis, computer-aided
diagnosis (CAD) of mammograms, feature dimensionality
reduction, lesion classification, random projection algorithm,
support vector machine (SVM).
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I. INTRODUCTION

EVELOPING computer-aided detection and diagnosis
(CAD) schemes of medical images have been attracting
broad research interest in order to detect suspicious diseased
regions, classify between malignant and benign lesions,
quantify disease severity, and predict disease prognosis or
monitor treatment efficacy. Some CAD schemes have been
used as “a second reader” or quantitative image marker
assessment tools in clinical practice to assist clinicians (i.e.,
radiologists) aiming to improve image reading accuracy and
reduce the inter-reader variability [1]. Despite of extensive
research effort and progress made in the CAD field,
researchers still face many challenges in developing CAD
schemes for clinical applications [2]. For example, in
developing CAD schemes, machine learning plays a critical
role, which use image features to train classification models to
predict the likelihood of the analyzed regions depicting or
patterns representing diseases. However, due to the great
heterogeneity of disease patterns and the limited size of image
datasets, how to identify a small and optimal image feature
vector to build the highly performed and robust machine
learning models remains a difficult task.

In current CAD schemes, after image preprocessing to
reduce image noise, detecting and segmenting suspicious
regions of interest (ROIs), CAD schemes can compute many
image features from the entire image region or the segmented
ROIs. Recently, two methods have attracted broad research
interest to compute image features. One uses a deep transfer
learning model as an automated feature extractor (i.e.,
extracting 4,096 features in a fully connected layer (FC6 or
FC7) of an AlexNet). The disadvantage of this approach is
requiring very big training and validation image datasets,
which are often not available in medical image fields. Another
approach uses radiomics concept and method to compute and
generate an initial feature pool. Although Radiomics typically
computes smaller number of features than deep learning based
feature extractors, it may still compute many features (i.e.,
>1,000 image features, which mostly represent texture patterns
of the segmented ROIs in variety of scanning directions as
reported in previous studies [3, 4]). However, due to the
limited size of the training datasets, such large number of
image features can often drive to overfit machine learning
models and reduce model robustness. Thus, it is important to
build an optimal feature vector from the initially large feature
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pool in which the generated features should not be redundant
or highly correlated [5]. Then, machine learning models can
be better trained to achieve the enhanced performance and
robustness. In general, if the feature dimensionality reduction
happens with choosing the most effective image features from
the initial feature pool, it is known as feature selection (i.e.,
using sequential forward floating selection (SFFS) [6]). On the
other hand, if the dimensionality reduction comes from
reanalyzing the initial set of features to produce a new set of
orthogonal features, it is known as feature regeneration (i.c.,
principal component analysis (PCA) and its modified
algorithms [7]). Comparing between these two methods,
feature regeneration method has advantages to more
effectively eliminate or reduce redundancy or correlation in
the final optimal image feature vector. However, most of
medical image data or features have very complicated or
heterogeneous distribution patterns, which may not meet the
precondition that all feature variables are linear to optimally
apply PCA-type feature regeneration methods.

In order to better address this challenge and more reliably
regenerate image feature vector for developing CAD schemes
of medical images, we investigate and test another feature
regeneration method namely, a random projection algorithm
(RPA), which is an efficient way to map features into a space
with a lower-dimensional subspace, while preserving the
distances between points under better contrast. This mapping
process is done with a random projection matrix. In the lower
space since the distance is preserved, it will be much easier
and reliably to classify between two feature classes. Because
of its advantages and high performance, RPA has been tested
and implemented in a wide range of engineering applications
including handwrite recognition [8], face recognition and
detection [9], visual object tracking and recognition [10, 11],
and car detection [12].

Thus, motivated by the success of applying RPA to the
complex and nonlinear feature data used in many engineering
application domains, we hypothesize that RPA also has
advantages when applying to medical images with the
heterogeneous feature distributions. To test our hypothesis, we
conduct this study to investigate feasibility and potential
advantages of applying RPA to build optimal feature vector
and train machine learning model implemented in a new
computer-aided diagnosis (CAD) scheme to classify between
malignant and benign breast lesions depicting on digital
mammograms. The details of the assembled image dataset, the
experimental methods of feature regeneration using RPA and
a support vector machine (SVM) model optimization, data
analysis and performance evaluation results are presented in
the following sections.

II. MATERIALS AND METHODS

A. Image Dataset

A fully anonymized dataset of full-field digital
mammography (FFDM) images acquired from 1,487 patients
are retrospectively assembled and used in this study. All cases
were randomly selected by an institutional review board (IRB)

2

TABLEI
CASE NUMBER AND PERCENTAGE DISTRIBUTION OF PATIENTS AGE AND
MAMMOGRAPHIC DENSITY RATED BY RADIOLOGISTS USING BIRADS

GUIDELINES.
Subgroup Malignant Benign
Cases Cases
Density
BIRADS 1 25 (3.9%) 58 (6.9%)
2 186 (28.8%) 262 (31.1%)
3 401 (62.3%) 502 (59.5%)
p-value = 4 32 (5.0%) 21 (2.5%)
0.576
Age of
Patients
(years old) A <40 11 (3.4%) 71 (8.4%)
40<A<50 109(19.2%) 158(18.7%)
50<A<60 167(25.6%) 285(33.8%)
60 <A<70 180(24.4%) 192(22.8%)
70 <A 177(27.4%) 137(16.3%)

certified research coordinator from the cancer repository and
picture archive and communication system (PACS). All
selected cases have suspicious soft-tissue mass type lesions
previously detected by the radiologists on the mammograms.
Based on lesion biopsy results, 644 cases depict malignant
lesions and 843 cases had benign lesions. These patients have
an age range from 35 to 80 years old. Table I summarizes and
compares case distribution information of patients’ age and
mammographic density rated by radiologists using breast
imaging reporting and data system (BIRADS) guidelines. As
shown in the table, patients in benign group are moderately
younger than the patients in the malignant group. However,
there is not a significant difference of mammographic density
between the two groups of patients (p = 0.576).

All FFDM images were acquired using one type of digital
mammography machines (Selenia Dimensions made by the
Hologic Company), which have a fixed pixel size of 70um in
order to detect microcalcifications. Since in this study, we
only focus on classification of soft tissue mass type lesions, all
images are thus subsampled using a pixel averaging method
with a 5X 5 pixel frame, so that the pixel size of the
subsampled images increases to 0.35mm. This subsample
method has been used and reported in many of our previous
CAD studies (i.e., [13, 14]). Additionally, in this dataset, the
majority of cases have two craniocaudal (CC) and
mediolateral oblique (MLO) view mammograms of either left
or right breast in which the suspicious lesions are detected by
the radiologists, while small fraction of cases just have one CC
or MLO image in which the lesions were detected. Overall,
1,197 images depicting malignant lesions and 1,302 images
depicting benign lesions are available in this image dataset.
All lesion centers are visually marked by the radiologists using
a custom-designed interactive graphic user interface (GUI)
tool. The marked lesion centers are recorded and used as
“ground-truth” to evaluate CAD performance [13].

B. Initial Image Feature Pool with a High Dimensionality
In developing CAD schemes to classify between malignant

and benign breast lesions, many different approaches have
been investigated and applied to compute image features
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including those computed from the segmented lesions [15], the
fixed regions of interest (ROIs) [16] and the entire breast area
[14]. Each approach has advantages and disadvantages.
However, their classification performance may be quite
comparable with an appropriate training and optimization
process. Thus, since this study focus on investigating the
feasibility and potential advantages of a new feature
dimensionality reduction method of RPA, we will use a simple
approach to compute the initial image features from both the
fixed ROI and the segmented lesion regions.

Since classification between malignant and benign lesions is
a difficult task, which depends on optimal fusion of many
image features related to tissue density heterogeneity,
speculation of lesion boundary, as well as variation of
surrounding tissues. Previous studies have demonstrated that
statistics and texture features can be used to model these
valuable image features including intensity, energy,
uniformity, entropy, and statistical moments, etc. Thus, like
most CAD schemes using the ROIs with a fixed size as
classification targets (including the schemes using deep
learning approaches [17]), this CAD scheme also focuses on
using the statistics and texture-based image features computed
from the defined ROIs and the segmented lesion regions. For
this purpose, following methods are used to compute image
features that are included in the initial feature pool.

First, from a ROI of an input image, gray level difference
method (GLDM) is used to compute the occurrence of the
absolute difference between pairs of gray levels divided in a
particularly defined distance in several directions. It is a
practical way for modeling analytical texture features. The
output of this function is four different probability
distributions. For an image I(m, n), we consider displacement
in different directions like &(dy, dy), then [(m,n) =
[Im,n) —I(m +d,,n+ dy)| estimates the
difference between gray levels, where d,,d, are integer

absolute

values. Now it is possible to determine an estimated
probability density function for [(m,n) like £(.|8) in which
f(i|8) = P(I(m,n) = i). It means for an image with L gray
levels, the probability density function is L-dimensional. The
components in each index of the function show the probability
of [(m,n) with the same value of the index. In the proposed
method implemented in this CAD study, we consider d, =
d, =11, which is calculated heuristically [18]. The
probability functions are computed in four directions (¢ =
0,mt/4, m/2, 3m/4), which signifies that four probability
functions are computed to provide the absolute differences in
four primary directions that each of which is used for feature
extraction.

Second, a gray-level co-occurrence matrix (GLCM)
estimates the second-order joint conditional probability
density function. The GLCM carries information about the
locations of pixels having similar gray level values, as well as
the distance and angular spatial correlation over an image sub-
region. To establish the occurrence probability of pixels with
the gray level of i, j over an image along a given distance of d
and a specific orientation of ¢, we have P(i,],d, ¢). In this

3

way, the output matrix has a dimension of the gray levels (L)
of the image [19]. Like GLDM, we compute four co-
occurrence matrices in four cardinal directions (¢ = 0, /4,
/2, 3m/4). GLCM is rotation invariant. We combine the
results of different angles in a summation mode to obtain the
following probability density function for feature extraction,
which is also normalized to reduce image dependence.

P(i,j) = P(i,j,d=2,¢)
@=0,m/4,m/2,3/4 1
P(i ')=7P(i’j) Ji,j =123, ..,L v
SRS Y WY (%) Kt

Third, a gray level run length matrix (GLRLM) is another
popular way to extract textural features. In each local area
depicting suspicious breast lesion, a set of pixel values are
searched within a predefined interval of the gray levels in
several directions. They are defined as gray level runs. GLRM
calculates the length of gray-level runs. The length of the run
is the number of pixels within the run. In the ROI, spatial
variation of the pixel values for benign and malignant lesions
may be different, and gray level run is a proper way to
delineate this variation. The output of a GLRM is a matrix
with elements that express the number of runs in a particular
gray level interval with a distinct length. Depending on the
orientation of the run, different matrices can be formed [20].
We in this study consider four different directions (¢ = 0,
n/4,m/2, 3n/4) for GLRM calculations. Then, just like
GLCM, GLRM is also rotation invariant. Thus, the output
matrices of different angles in a summation mode are merged
to generate one matrix.

Fourth, in addition to the computing texture features from
the ROI of the original image in the spatial domain, we also
explore and conduct multiresolution analysis, which is a
reliable way to make it possible to perform zooming concept
through a wide range of sub-bands in more details [21].
Hence, textural features extracted from the multiresolution
sub-bands manifest the difference in texture more clearly.
Specifically, a wavelet transform is performed to extract
image texture features. Wavelet decomposes an image into the
sub-bands made with high-pass and low-pass filters in
horizontal and vertical directions followed by a down-
sampling process. While down-sampling is suitable for noise
cancelation and data compression, high-pass filters are
beneficial to focus on edge, variations, and the deviation,
which can show and quantify texture difference between
benign and malignant lesions. For this purpose, we apply 2D
Daubechies (Db4) wavelet on each ROI to get approximate
and detailed coefficients. From the computed wavelet maps, a
wide range of texture features is extracted from principal
components of this domain.

Moreover, analyzing geometry and boundary of the breast
lesions and the neighboring area is another way to distinguish
benign and malignant lesions. In general, benign lesions are
typically round, smooth, convex shaped, with well-
circumscribed boundary, while malignant lesions tend to be
much blurry, irregular, rough, with non-convex shapes [22].
Hence, we also extract and compute a group of features that
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represent geometry and shape of lesion boundary contour.
Then, we add all computed features as described above to
create the initial pool of image features.

C. Applying Random Projection Algorithm (RPA) to
Generate Optimal Feature Vector

Before using RPA to generate an optimal feature vector
from the initial image feature pool, we first normalize each
feature to make its value distribution between [0, 1] to reduce
case-based dependency and weight all features equally. Thus,
for each case, we have a feature vector of size d, which is
valuable to determine that case based on the extracted features
as a point in a d dimensional space. For two points like X =
(%4, ., xq), and Y = (y4, ... y4), the distance in d dimensional
spaces define as:

X —Y| = 2

In addition, it is also possible to define the volume V of a
sphere in a d dimensional space as a function of its radius (7)
and the dimension of the space as (3). This equation is proved
in [23].

V() = — 3)
%dl"(%)

The matrix of features is normalized between [0, 1]. It
means a sphere with ¥ = 1 can encompass all the data. An
interesting fact about a unit-radius sphere is that as equation
(4) shows, as the dimension increase, the volume goes to zero.

d

. 4. . d . . d, .
Since 7z is an exponential of > while growing rate of F(E) is
. d . . .
a factorial of > At the same time, the maximum possible

distance between two points stays at 2.

d
27 (%)

Moreover, based on the heavy-tailed distribution theorem,
for a case like X = (xq,...,x4) in the space of features,
suppose with an acceptable approximation features are
independent, or nearly perpendicular variables as mapped to
different axes, with E(x;) =p;, Y&,p; =u and E|(x; —
p)¥| < p; for k =2,3,...,|t%/6u], then, the previous study

[24] has proven that:
d

Z Xi—H
i=1

We can perceive that the farther the value of t increases, the
smaller the chance of having a point out of that distance,
which means that X would be concentrated around the mean
value. Overall, based on equations (4), and (5) with an
acceptable approximation, all data are encompassed in a
sphere of size one, and they are concentrated around their
mean value. As a result, if the dimensionality is high, the
volume of the sphere is close to zero. Hence, the contrast
between the cases is not enough for a proper classification.

—t? —t
prob( >t) < Max (3312#,4— X 27) (5)

4

Above analysis also indicates the more features included in
the initial feature vector, the higher the dimension of the space
is, and the more data is concentrated around the center, which
makes it more difficult to have enough contrast between the
features. A powerful technique to reduce the dimensionality
while approximately preserves the distance between the
points, which implies approximate preservation of the highest
amount of information, is the key point that we are looking
for. If we adopt a typical feature selection method and
randomly select a k-dimensional sup-space of the initial
feature vector, it is possible to prove that all the projected
distances in the new space are within a determined scale-factor
of the initial d-dimensional space [25]. Hence, although some
redundant features are removed, the final accuracy may not
increase, since contrast between the points may still be not
enough to present a robust model.

To address this issue, we take advantage of Johnson-
Lindenstrauss Lemma to optimize the feature space. Based on
the idea of this lemma, for any 0 < € < 1, and any number of
cases as N, which are like the points in d-dimensional space
(R%), if we assume k as a positive integer, it can be computed

as:
InN

2 .3
T-

Then, for any set V of N points in R4, forallu,v €V, itis
possible to prove that there is a map, or random projection
function like f: R - R¥, which preserves the distance in the

following approximation [26], which is known as Restricted
Isometry Property(RIP):

A-Olu-v*<If-fWI

k>4

(6)

<A+e)|u—vl? )
Another arrangement of this formula is like:
w) — f(W)|? w) — f()|?
If (W) = f(v)] <|u—v|2§|f() f@)l ®)

1+ ¢ - (1-¢)

As these formulas show the distance between the set of
points in the lower-dimension space is approximately close to
the distance in high-dimensional space. This Lemma states
that it is possible to project a set of points from a high-
dimensional space into a lower dimensional space, while the
distances between the points are nearly preserved.

It implies that if we project the initial group of features into
a space with a lower-dimensional subspace using the random
projection method, the distances between points are preserved
under better contrast. This may help better classify between
two feature classes representing benign and malignant lesions
with low risk of overfitting.

It should be noted that for an input matrix of features like
X € R™4 n and d represent the number of training samples
and features, respectively. Unlike the principal component
analysis (PCA) that assumes relationship among feature
variables are linear and intends to generate new orthogonal
features, RPA aims to preserve distance of the points (training
samples) while reducing the space dimensionality. Thus, using
RPA will create a subspace X = XR in which R satisfies the
RIP condition, and R € R%*k,X € R™*¥_ Since the subspace's
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a)

)

Fig. 1. Example of 4 extracted ROIs with the detected suspicious soft-
tissue masses (lesions) in ROI center. a,b) 2 ROIs involving malignant
lesions and c,d) 2 ROIs involving benign lesions.

geometry is preserved, previous studies [27,28] proved that a
SVM based machine learning classifier could better preserve
the characteristics of the image dataset to build the optimal
hyperplane and thus reduce the generalization error. In other
words, if an SVM classifier makes the resulting margin y* =

1/”W*"2 for its optimal hyperplane (w*) after solving the

optimization problem on the initial feature space of X, and on
the subspace of X, it makes the resulting margin 7* =
1/”W*"2 for the respective optimized hyperplane (W™*).

Another study [29] proved that hinge loss (for margin 7*) of
the classifier trained on the subspace data (X) is less than that
(y") of the classifier trained on the original data (X). Strictly
speaking, the trained classifier's error rate on the optimized
subspace generated using RPA is lower than that of the
classifier trained on the original space. It indicates that
training a machine learning classifier using an optimal
subspace under RIP condition can build a more accurate and
robust model for the classification purpose

In this study, we investigate and demonstrate whether using
RPA can yield better result as comparable to other popular
feature dimensionality reduction approaches (i.e., PCA).

D. Experiment of Feature Combination and Dimensionality
Reduction

First, the proposed CAD scheme applies an image
preprocessing step to the whole images in the dataset to read
them one by one, and based on the lesion centers pre-marked
by the radiologists to extract a squared ROI area in which the
centers of the lesion and ROI overlap. In order to identify the
optimal size of the ROIs, a heuristic method is applied to
select and analyze ROI size. Basically, the different ROI sizes
(i.e., in the range from 128x128 to 180%180 pixels) are
examined and compared. From the experiments, we observe
that the ROIs with size of 150x150 pixels generate the best
classification results applying to this large and diverse dataset,
which reveals that this is the most efficient size to cover all

5

(b)

@ (© ®

Example to illustrate lesion segmentation, which include a) the

Fig. 2.
original ROI, b) absolute difference of ROI from low-pass filtered version, c)
combination of (a) and (b) which gives the suspicious regions better contrast
to the background, d) output of morphological filtering, ¢) blob with the
largest size is selected (a binary version of the lesion), and f) finally
segmented lesion area. It is output of mapping (e) to (a).

TABLE II
LIST OF THE COMPUTED FEATURES ON ROI AREA.

Feature Feature Description

category

Density 1.Mean, 2. variance, 3. skewness, 4. kurtosis, 5. entropy,

related 6. correlation, 7. energy, 8. root mean square level, 9.

features uniformity, 10. max, 11. min, 12. median, 13. range, 14.
mean absolute deviation, 15. Contrast, 16. homogeneity,
17. smoothness, 18. inverse difference movement, 19.
suspicious regions volume, 20. standard deviation.

mass lesions included in our diverse dataset, which

corresponds to use the ROI of 52.5 x 52.5mm?. Fig. 1 shows
examples of 4 ROIs depicting two malignant lesions and two
benign lesions. After ROI determination, all the images in the
dataset are saved in Portable Network Graphics (PNG) format
with 16 bits in the lossless mode for the feature extraction
phase.

Next, the CAD scheme is applied to segment lesion from
the background. For this process, CAD applies an unsharp
masking method in which a low-pass filter with a window-size
of 30 is first applied to filter the whole ROI. Next, CAD
computes the absolute pixel value difference between the
original ROI and the filtered ROI to produce a new image map
that highlights the lesion and other regions (or blobs) with
locally higher and heterogeneous tissue density. Then, CAD
applies morphological filters (i.e., opening and closing) to
delete the small and isolated blobs (with the pixel members
less than 50), and repair boundary contour of the lesion and
other remaining blobs with higher tissue density. Since in this
study, the user clicks the lesion center and the ROI is extracted
around this clicked point, the blob located in the center of ROI
represents the segmented lesion. Fig. 2 shows an example of
applying this algorithm to locate and segment suspicious
lesion from the surrounding tissue background.

After image segmentation, CAD scheme computes several
sets of the relevant image features. The first group of features
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113 |HL3
EEES A2
HL1
LH2 HH2
Input Image DWT PCA ([LL3, HL3, LH3, HH3])
LH1 HH1 1
DWT based feature
extraction

Fig 3. Wavelet based feature extraction. Wavelet decomposition is applied three times to make the images compress as possible. Then PCA is adopted as

another way of data compression.

are the pixel value (or density) related statistics features as
summarized in Table II. These 20 statistics features are
repeatedly computed from three types of images namely, 1)
the entire ROI of the original images (as shown in Fig. 2(a)),
2) the segmented lesion region (as shown in Fig. 2(f)), and 3)
all highly dense and heterogeneous tissue blobs (as shown in
Fig. 2(d)). Thus, this group of features includes 60 statistics
features.

The second group of features is computed from the GLRLM
matrix of the ROI area. For this purpose, 16 different
quantization levels are considered to calculate all probability
functions in four different directions from the histograms.
After combining the probability functions, on rotation
invariance version of them, the following group of features is
computed. Features are short-run emphasis, long-run
emphasis, gray level non-uniformity, run percentage, run-
length non-uniformity, low gray level run emphasis, and high
gray level run emphasis. Hence, this group of features includes
seven GLRM-based features.

The third group of features includes GLDM based features
computed from the entire ROI. Specifically, we select a
distance value of 11 pixels for the inter-sample distance
calculation. CAD computes four different probability density
functions (PDFs) based on the image histogram calculation in
different directions. The PDF (p) with (1) as the mean of the
population, standard deviation, root mean square level, and the

first four statistical moments (n =1,2,3,4) with the
following equation are calculated as features.
N
= D i = )" ©
i=1

It is an unbiased estimate of n moment possible to
calculate by:
m, = fp(x)x"dx (10)
As shown in equation 10, p(x) is weighted by x™. Hence,
any change in the p(x) is polynomially reinforced in the
statistical moments. Thus, any difference in the four PDFs
computed from malignant lesions is likely to be polynomially
reinforced in the statistical moments of the computed

coefficients. Six features from each of four GLDM based
PDFs make this feature group, which has total 24 features.

TABLE III
LIST OF WAVELET-BASED FEATURES.

Feature Feature Description
category
Wavelet- 1. Contrast, 2. Correlation, 3. Energy, 4. Homogeneity, 5.
based Mean, 6. Standard deviation, 7. Entropy, 8. Root mean
features square level, 9. Variance, 10. Smoothness, 11. Kurtosis,
12. Skewness, 13. IDM
TABLE IV
LiST OF GEOMETRICAL FEATURES.
Feature Feature Description
category
Geometrical |- Area, 2. Major Axis Length, 3. Minor Axis Length, 4.
based Eccentricity, 5. Orientation, 6. Convex Area, 7.
features Circularity, 8. Filled Area, 9. Euler Number, 10.

Equivalent Diameter, 11. Solidity, 12. Extent, 13.
Perimeter, 14. Perimeter Old,15. Max Feret Diameter, 16.
Max Feret Angle,18. Min Feret Diameter,19. Min Feret
Angle, 20. Roundness Ratio

The fourth group of features computes GLCM based texture
feature. Based on the method proposed in the previous study
[30], our CAD scheme generates a matrix of 44 textural
features computed from GLCM matrix based on all GLCM
based equations proposed in [19]. In this way any properties of
the GLCM matrix proper for the classification purpose is
granted. Hence, this group contains 44 features computed
from the entire ROI.

The fifth group of features includes wavelet-based features.
The Daubechies wavelet decomposition is accomplished on
the original ROI (i.e., Fig. 2(a)). Fig. 3 shows a block diagram
of the wavelet-based feature extraction procedure. The last
four sub-bands of wavelet transform are used to build a matrix
of four sub-bands in which principal components of this
matrix are driven for feature extraction and computation. The
computed features are listed in Table III. We also repeat the
same process to compute wavelet-based feature from the
segmented lesion (i.e., Fig. 2(f)). As a result, this feature
group includes 26 wavelet-based image features.

Last, to address the differences between morphological and
structural characteristics of benign and malignant lesions,
another group of geometrical based features is derived and
computed from the segmented lesion region. For this purpose,
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Fig 4. Illustration of the overall classification flow of the CAD scheme developed and tested in this study.

a binary version of the lesion, like what we showed in Fig. 2
(e), is first segmented from the ROI area. Then, all the
properties listed in Table IV are calculated from the
segmented lesion region in the image using the equations
reported in [31].

By combining all features computed in above 6 groups,
CAD scheme creates an initial pool of 181 image features.
Then, RPA is applied to reduce feature dimensionality and
generate an optimal feature vector. For this purpose, we utilize
sparse random matrix as the projection function to achieve the
criteria as defined in equation (7). Sparse random matrix is a
memory efficient and fast computing way of projecting data,
which guarantees the embedding quality of this idea. To do so,
if we define s = 1/density, in which density defines ratio of
non-zero components in the RPA, the components of the
matrix as random matrix elements (RME) are:

- é, 1 /2
ncomponents S
RME = {0,  withprobability 1—1/, (11)
S
1
ncomponents ' /ZS

In this process, we select Ncomponents, Which is the size of the

projected subspace. As recommended in [32], we consider
number of non-zero elements to the minimum density, which

is: 1 .
/,/n_features

E. Development and Evaluation of Machine Learning Model

After processing images and computing image features
from all 1,197 ROIs depicting malignant lesions and 1,302
ROIs depicting benign lesions, we build machine learning
model to classify between malignant and benign lesions by
taking following steps or measures. Fig. 4 shows a block
diagram of the machine learning model along with the training
and testing process. First, although many machine learning
models (i.e.,, artificial neural networks, K-nearest
neighborhood network, Bayesian belief network, support
vector machine) have been investigated and used to develop
CAD schemes, based on our previous research experience
[14], we adopt the support vector machine (SVM) to train a
multi-feature fusion based machine leaning model to predict

the likelihood of lesions being malignancy in this study. Under
a grid search and hyperparameter analyses, linear kernel
implemented in SVM model can achieve a low computational
cost and high robustness in prediction results as well.

Second, we apply the RPA to reduce the dimensionality of
image feature space and map to the most efficient feature
vector as input features of the SVM model. To demonstrate
the potential advantages of using RPA in developing machine
learning models, we build and compare 5 SVM models, which
using all 181 image features included in the initial feature
pool, and embedding 4 other feature dimensionality reduction
methods including (1) random projection algorithm (RPA), (2)
principle component analyses (PCA), (3) nonnegative matrix
factorization (NMF), and (4) Chi-squared (Chi2).

Third, to increase size and diversity of training cases, as
well as reduce the potential bias in case partitions, we use a
leave-one-case-out (LOCO) based cross-validation method to
train SVM model and evaluate its performance. All feature
dimensionality reduction methods discussed in the second step
are also embedded in this LOCO iteration process to train the
SVM. This can diminish the potential bias in the process of
feature dimensionality reduction and machine learning model
training as demonstrated in our previous study [33]. When the
RPA is embedded in the LOCO based model training process,
it helps generate a feature vector independent of the test case.
Thus, the test case is unknown to both RPA and SVM model
training process. In this way, in each LOCO iteration cycle,
the trained SVM model is tested on a truly independent test
case by generating an unbiased classification score for the test
case. As a result, all SVM-generated classification scores are
independent of the training data. In addition, other N-fold
cross-validation methods (i.e., N = 3,5,10) are also tested
and compared with LOCO method in the study.

Fourth, since majority of lesions detected in two ROIs from
CC and MLO view mammograms, in the LOCO process, two
ROIs representing the same lesion will be grouped together to
be used for either training or validation to avoid potential bias.
After training, ROIs in one remaining case will be used to test
the machine learning model that generates a classification
score to indicate the likelihood of each testing ROI depicting a
malignant lesion. The score ranges from 0 to 1. The higher
score indicates a higher risk of being malignant. In addition to
the classification score of each ROI, a case-based likelihood
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Fig 5. A malignant case annotated by radiologists in both CC and MLO
views. The annotated mass is squared in each view.

TABLE V
ACCURACY OF THE SVM MODELS FOR CASE-BASED CLASSIFICATION
BASED ON SIX DIFFERENT CATEGORIES OF THE ORIGINAL FEATURES.

Feature category Number of features Accuracy (%)
Statistical features 60 66
GLRLM 7 59
GLDM 24 56
GLCM 44 61
Wavelet based 26 60
Geometrical based 20 63

score is also generated by fusion of two scores of two ROIs
representing the same lesion depicting on CC and MLO view
mammograms.

Fifth, a receiver operating characteristic (ROC) method is
applied in the data analysis. Area under ROC curve (AUC) is
computed from the ROC curve and utilized as an evaluation
index to evaluate and compare performance of each SVM
model to classify between the malignant and benign lesions.
Then, we also apply an operating threshold of T = 0.5 on the
SVM-generated classification scores to classify or divide all
testing cases into two classes of malignant and benign cases.
By comparing to the available ground-truth, a confusion
matrix for the classification results is determined for each
SVM. From the confusion matrix, we compute classification
accuracy, sensitivity, specificity, and odds ratio (OR) of each
SVM model based on both lesion region and case. In the
region-based performance evaluation, all lesion region are
considered independent, while in the case-based performance
evaluation, the average classification score of two matched
lesion regions (if the lesions are detected and marked by
radiologists in both CC and MLO view) is computed and used.
In this study, all pre-processing and feature extraction steps to
make the matrix of features are conducted using MATLAB
R2019a package.

III. RESULTS

Fig. 5 shows a malignant case as an example in which the
lesion center is annotated by radiologists in both CC and MLO
view mammograms. Based on the marked center, we plot two
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square areas on two images in which image features are
computed by the CAD scheme. Using the whole feature vector
of 181 image features, the SVM-model generates the
following classification scores to predict the likelihood of two
lesion regions on two view images being malignant, which are
Sceview = 0.685,  and Sy oview = 0.291. The case-based
classification score is Sgqs. = 0.488. When using the feature
vectors generated by the RPA, the SVM-model generates two
new classification scores of these two lesion regions, which
are Scepiew = 0.817, and Sy oview = 0.375. Thus, the case-
based classification score is S¢g5. = 0.596. As a result, using
the SVM model trained using all 181 image features
misclassifies this malignant lesion into benign when an
operating threshold (T = 0.5) is applied, while the SVM model
trained using the embedded RPA increases the classification
scores for both lesion regions depicting on CC and MLO view
images. As a result, it is correctly classified as malignant with
the case-based classification score greater than the operating
threshold.

Table V summarizes the performance of using the original
features computed in 6 categories to classify between the
malignant and benign lesions. As shown in this table, using
the group of statistical features yields the highest classification
accuracy among 6 categories of features. Fig. 6 shows a curve
indicating the variation trend of the AUC values of the SVM
models trained and tested using different number of features
(ranging from 50 to 100) generated by the proposed RPA. The
trend result indicates that using a reduced feature
dimensionality with 80 features, the SVM yields the highest
AUC value of 0.84.

Table VI shows and compares the average number of the
input features used to train 5 SVM models with and without
embedding different feature dimensionality reduction
methods, lesion region-based and case-based classification
performance of AUC values. When embedding a feature
dimensionality reduction algorithm, the size of feature vectors
in different LOCO-based SVM model training and validation
cycle may vary. Table VI shows that average number of
features are reduced from original 181 features to 100 or less.
When using RPA, the average number of features is 80. From
both Table VI and Fig. 7, which show and compare the
corresponding AUC values and ROC curves, we observe that
a SVM model trained using an embedded RPA feature
dimensionality reduction method produces the statistically
significantly higher or improved classification performance
including a case-based AUC value of 0.84+0.01 as comparing
to all other SVM model (p < 0.05) including the SVM trained
using the initial feature pool of 181 features and other SVM
models embedded with other three feature dimensionality
reduction methods namely, principle component analyses
(PCA), nonnegative matrix factorization (NMF) and Chi-
squared (Chi2) in the classification model training process. In
addition, the data in Table VI and ROC curves in Fig. 7 also
indicate that the case-based lesion classification yields higher
performance than the region-based classification performance,
which indicates that using and combining image features
computed from two-view mammograms has advantages.
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FIVE CONFUSION MATRICES OF CASE-BASED LESION CLASSIFICATION
0.80 USING 5 DIFFERENT SVM MODELS TO CLASSIFY BETWEEN BENIGN AND
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@
S 075 Feature . Actual Actual
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= ..
fOrlglnal Negative 245 631
eatures
0.65
Positive 406 173
NMF X
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Fig. 6. A trend of the case-based classification AUC values generated by the ceatve
SVM models trained using different number of features (NF) generated by Positive 436 197
the RPA. PCA )
Negative 208 646
TABLE VI —
SUMMARY OF AVERAGE NUMBER OF IMAGE FEATURES USED IN 5 Positive 452 177
DIFFERENT SVM MODELS AND CLASSIFICATION PERFORMANCE RPA Negative 192 666
(AUC) BASED ON BOTH REGION AND CASE-BASED LESION
CLASSIFICATION. p VALUE COMPARES RESULTS OF EACH MODEL TO
THE LAST ONE (RPA) AS THE OPTIMAL ONE. TABLE VIII
SUMMARY OF THE LESION CASE-BASED CLASSIFICATION ACCURACY,
Feature Number of AUC p SENSITIVITY, SPECIFICITY, AND ODD RATIO OF USING 5 SVMS
sub-groups features value TRAINED USING DIFFERENT GROUPS OF OPTIMIZED FEATURES.
Original features, region 181 0.72 0.004 Feature Accuracy Sensitivity Specificity OdQS
based sub- (%) (%) (%) Ratio
l());Eilnal features, case 181 074 0.005 group
Original 69.3 62.0 75.0 4.85
NME, region based 100 0.73 0.005 features
NMEF, case based 100 0.77 0.023 NMF 72.4 63.1 79.5 6.61
Chi2, region based 76 0.73 0.005
Chi2, case based 76 0.75 0.015 Chi2 709 630 771 >.67
PCA, region based 83 0.75 0.011 PCA 7.8 63.0 76.6 6.87
PCA, case based 83 0.79 0.041
RPA, region based 80 0.78  0.035 RPA 75.2 70.2 79.0 8.86
RPA, case based 80 0.84 -
TABLE IX
ROC for different SVM models SUMMARY OF THE CASE-BASED LESION CLASSIFICATION FOR THE
1 e PROPOSED METHOD (RPA) UNDER DIFFERENT CROSS VALIDATION
(CV) TECHNIQUES.
09
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" ——— PCA, Image based based classification using 5 SVM-models after applying the
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— m*:ﬁd specificity, and odds ratio are measured and shown in Table
01 VIII. This table also shows that the SVM model trained based
D'J . | | . | . | | . ) on the feature vector generated by the RPA yields the highest
0 01 0.2 0.3 0.4 0.5 0.6 07 0.8 0.9 1

classification accuracy comparing to the other 4 SVM models
Fig. 7. Comparison of 10 ROC curves generated using 5 SVM models and 2 trained using f:eature. VGCFOI‘S genel:ated either based on 'OFher
scoring (region and case-based) methods to classify between malignant and three feature dimensionality reduction methods or the original
benign lesion regions or cases. feature pool of 181 features.

False positive rate
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Table IX shows and compares the classification results
using four different cross-validation methods (N = 3,5,10
and LOCO). The results show two trends of performance
decrease and standard deviation increase (in both AUC and
accuracy) as the number of folds decreases from the maximum
folds (LOCO) to the smallest folds (N = 3). This indicates
that using LOCO yields not only the highest performance, but
also probably highest robustness due to the smallest standard
deviation.

Additionally, to assess the reduction of feature redundancy
after applying RPA, we create a feature correlation matrix,
corr(i,j) with the number of M features. Then, we compute a
mean absolute value of the correlation matrix:

M
1

mean of correlation = MM izllcorr(l,])l (12)

Two mean values of correlation computed from two
correlation matrices generated using the feature space (or
pools) before and after applying RPA are 0.49 and 0.31,
respectively, which indicates that feature correlation
coefficients after using RPA is reduced. Thus, using RPA can
reduces not only dimensionality of feature space, but also
redundancy of the feature space.

Last, the computational processing tasks of applying RPA
to generate optimal features and train the SVM model are
performed using a Dell computer (Processor: Intel(R) Xeon
CPU E5-1603 v3, 2.8 GHz, and 16 GB RAM) and Python-
based software package. For cross validation process we use
Sklearn-model library. For example, in the 10-fold cross
validation, the average computation time to complete one
cross-validation iteration is approximately 38.12 seconds.

IV. DISCUSSION

Mammography is a popular imaging modality used in breast
cancer screening and early cancer detection. However, due to
the heterogeneity of breast lesions and dense fibro-glandular
tissue, it is difficult for radiologists to accurately predict or
determine the likelihood of the detected suspicious lesions
being malignant. As a result, mammography screening
generates high false-positive recall rates and majority of
biopsies are approved to be benign [34]. Thus, to help increase
specificity of breast lesion classification and reduce the
unnecessary biopsies, developing CAD schemes to assist
radiologists more accurately and consistently classifying
between malignant and benign breast lesions remains an active
research topic [35]. In this study, we develop and assess a new
CAD scheme of mammograms to predict the likelihood of the
detected suspicious breast lesions being malignant. This study
has following unique characteristics as comparing to other
previous CAD studies reported in the literature.

First, previous CAD schemes of mammograms computed
image features from either the segmented lesion regions or the
regions with a fixed size (i.e., squared ROIs to cover lesions
with varying sizes). Both approaches have advantages and
disadvantages. Due to the difficulty to accurately segment
subtle lesions with fuzzy boundary, the image features
computed from the automatically segmented lesions may not
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be accurate or reproducible, which reduces the accuracy of the
computed image features to represent actual lesion regions.
When using the fixed ROIs (including most deep learning
based CAD schemes [17, 36]), although it can avoid the
potential error in lesion segmentation, it may lose and reduce
the weight of the image features that are more relevant to the
lesions due to the potential heavy influence of irregular fibro-
glandular tissue distribution surrounding the lesions with
varying sizes. In this study, we tested a new approach that
combines image features computed from both a fixed ROI and
the segmented lesion region. In addition, comparing to the
most of previous CAD studies as surveyed in the previous
study, which used several hundreds of malignant and benign
lesion regions [37], we assemble a much larger image dataset
with 1,847 cases or 2,499 lesion region (including 1,197
malignant lesion regions and 1,302 benign lesion regions).
Despite using a much larger image dataset, this new CAD
scheme yields a higher classification performance (AUC =
0.84+0.01) as comparing to AUC of 0.78 to 0.82 reported in
our previous CAD studies that using much smaller image
dataset (<500 malignant and benign ROIs or images) [17, 38].
Thus, although it may be difficult to directly compare
performance of CAD schemes tested using different image
datasets as surveyed in [37], we believe that our new approach
to combine image features computed from both a fixed ROI
and the segmented lesion region has advantages to partially
compensate the potential lesion segmentation error and
misrepresentation of the lesions related image features, and
enable to achieve an improved or very comparable
classification performance.

Second, since identifying a small, but effective and non-
redundant image feature vector plays an important role in
CAD development to train machine learning classifiers or
models, many feature selection or dimensionality reduction
methods have been investigated and applied in previous
studies. Although these methods can exclude many redundant
and low-performed or irrelevant features in the initial pool of
features, the challenge of how to build a small feature vector
with orthogonal feature components to represent the complex
and non-linear image feature space remains. For the first time,
we in this study introduce the RPA to the medical imaging
informatics field to develop CAD scheme. RPA is a technique
that maximally preserves the distance between the sub-set of
points in the lower-dimension space. As explained in the
Introduction section, in the lower space under preserving the
distance between points, classification is much more robust
with low risk of overfitting. This is not only approved by the
simulation or application results reported in previous studies,
it is also confirmed by this study. The results in Table VI show
that by using the optimal feature vectors generated by RPA,
the SVM model yields significantly higher classification
performance in comparison with other SVM models trained
using either all initial features or other feature vectors
generated by other three popular feature selection and
dimensionality reduction methods. Using the RPA boosts the
AUC value from 0.72 to 0.78 in comparison with the original
feature vector in the lesion region-based analysis, and from
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0.74 to 0.84 in the lesion case-base evaluation, which also
enhances the classification accuracy from 69.3% to 75.2%,
and approximately doubling the odds ratio from 4.85 to 8.86
(Table VIII). Thus, the study results confirm that RPA is a
promising technique applicable to generate optimal feature
vectors for training machine learning models used in CAD of
medical images.

Third, since the heterogeneity of breast lesions and surround
fibro-glandular tissues distributed in 3D volumetric space, the
segmented lesion shape and computed image features often
vary significantly in two projection images (CC and MLO
view), we investigate and evaluate CAD performance based
on single lesion regions and the combined lesion cases if two
images of CC and MLO views were available and the lesions
are detectable on two view images. Table VI shows and
compares lesion region-based and case-based classification
performance of 5 SVM models. The result data clearly
indicates that instead of just selecting one lesion region for
likelihood prediction, it would be much more accurate when
the scheme processes and examines two lesion regions
depicting on both CC and MLO view images. For example,
when using the SVM trained with the feature vectors
generated by the RPA, the lesion case-based classification
performance increases 7.7% in AUC value from 0.78 to 0.84
as comparing to the region-based performance evaluation.

Last, although the study has tested a new CAD development
method using a RPA to generate optimal feature vector and
yielded encouraging results to classify between the malignant
and benign breast lesions, we realize that the reported study
results are made on a laboratory-based retrospective image
data analysis process with several limitations. First, although
the dataset used in this study is relatively large and diverse,
whether this dataset can sufficiently represent real clinical
environment or breast cancer population is unknown or not
tested. All FFDM images were acquired using one type of
digital mammography machines. Due to the difference of the
image characteristics (i.e., contrast-to-noise ratio) between
FFDM machines made by different vendors, the CAD scheme
developed in this study may not be directly and optimally
applicable to mammograms produced by other types of FFDM
machines. However, we believe that the concept demonstrated
in this study is valid. Thus, the similar CAD schemes can be
easily retrained or fine-tuned using a new set of digital
mammograms acquired using other different types of FFDM
machines of interest. Second, in this retrospective study, the
image dataset has a higher ratio between the malignant and
benign lesions, which is different from the false-positive recall
rates in the clinical practices. Thus, the reported AUC values
may also be different from the real clinical practice, which
needs to be further tested in future prospective clinical studies.
Third, in the initial pool of features, we only extracted a
limited number of 181 statistics, textural and geometrical
features, which are much less than the number of features
computed based on recently developed radiomics concept and
technology [3, 4]. Thus, more texture features can be explored
in future studies to increase diversity of the initial feature pool,
which may also increase the chance of selecting or generating
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more optimal features. Additionally, many deep transfer
learning models have been recently tested as feature extractors
in medical imaging field, which produce much larger number
of features than the radiomics approaches. Thus, whether
using RPA can also help significantly reduce dimensionality
of these feature extractors to more effectively and robustly
train or build the final classification layer of the deep leaning
models should be investigated in future studies.

V. CONCLUSION

In summary, due to the difference between human vision
and computer vision, it is often difficult to accurately identify
a small set of optimal and non-redundant features computed
by the CAD schemes of medical images. In this study, we
investigate feasibility of applying a new approach based on the
random projection algorithm (RPA) to generate the optimal
feature vectors for training machine learning models
implemented in the CAD schemes of mammograms to classify
between malignant and benign breast lesions. Study results
indicate that applying this RPA approach creates a more
compact feature space that can reduce feature correlation or
redundancy. By comparing with other three popular feature
dimensionality reduction methods, the study results also
demonstrate that using RPA enables to generate an optimal
feature vector to build a machine learning model, which yields
significantly higher classification performance. In addition,
since building an optimal feature vector is an important
precondition of building optimal machine learning models, the
new method demonstrated in this study is not only limited to
CAD schemes of mammograms, it can also be adopted and
used by researchers to develop and optimize CAD schemes of
other types of medical images to detect and diagnose different
types of cancers or diseases in the future
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