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Background and Objective: Non-invasively predicting the risk of cancer metastasis before surgery can play
an essential role in determining which patients can benefit from neoadjuvant chemotherapy. This study
aims to investigate and test the advantages of applying a random projection algorithm to develop and
optimize a radiomics-based machine learning model to predict peritoneal metastasis in gastric cancer
patients using a small and imbalanced computed tomography (CT) image dataset.
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Methods: A retrospective dataset involving CT images acquired from 159 patients is assembled, includ-
ing 121 and 38 cases with and without peritoneal metastasis, respectively. A computer-aided detection
scheme is first applied to segment primary gastric tumor volumes and initially compute 315 image fea-
tures. Then, five gradients boosting machine (GBM) models embedded with five feature selection methods
(including random projection algorithm, principal component analysis, least absolute shrinkage, and se-
lection operator, maximum relevance and minimum redundancy, and recursive feature elimination) along
with a synthetic minority oversampling technique, are built to predict the risk of peritoneal metastasis.
All GBM models are trained and tested using a leave-one-case-out cross-validation method.

Results: Results show that the GBM model embedded with a random projection algorithm yields a sig-
nificantly higher prediction accuracy (71.2%) than the other four GBM models (p<0.05). The precision,
sensitivity, and specificity of this optimal GBM model are 65.78%, 43.10%, and 87.12%, respectively.
Conclusions: This study demonstrates that CT images of the primary gastric tumors contain discrimi-
natory information to predict the risk of peritoneal metastasis, and a random projection algorithm is a
promising method to generate optimal feature vector, improving the performance of machine learning
based prediction models.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction would be different [4]. Recent studies demonstrated that applying

preoperative NAC for advanced gastric cancer patients with peri-

Although the occurrence of gastric cancer has declined recently,
it remains the third leading cause of cancer-related death world-
wide [1]. While surgery remains the only curative treatment op-
tion, preoperative neoadjuvant chemotherapy (NAC) has demon-
strated favorable results with increased therapeutic resection rates
and improved survival [2]. Preventing the adverse effect of NAC,
patients with different disease stages must be distinguished from
each other [3] because, for each step of the disease, the treatment
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toneal metastasis (PM) yielded a much better clinical outcome and
enhanced the overall survival rate [5,6]. Thus, an accurate assess-
ment of the presence of the PM is essential for the selection of
appropriate patients for NAC. Since the overall accuracies of sub-
jectively reading endoscopic ultrasound and computed tomography
(CT) images are not completely reliable [3,4], an alternative tech-
nique is needed to facilitate the assessment of tumor stages and
the risk of PM.

Recently, the novel radiomics technique has been applied to ex-
tract quantitative information from medical images with a large
pool of image features, and the data mining of image feature pool
offers an exciting approach to build machine learning (ML) mod-
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Table 1
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Distribution of demographic information and several related clinical results of study cases in

the dataset.

Category Cases with PM  Cases without PM
Total Cases 121 38
Age (years old) < 45 11 (6.9%) 5(3.1%)
45 - 65 72 (45.2%) 23 (14.4%)
> 65 38 (23.8%) 10 (6.2%)
Mean + SD  59.49 + 11.97 59.11 + 8.75
Median 61 60
Gender Men 94 (59.1%) (18.8%)
Women 27 (16.9%) 8 (5.0%)
Tumor Location Upper 37 (23.2%) 19 (11.9%)
Medium 20 (12.6%) 7 (4.4%)
Lower 50 (31.4%) 12 (7.5%)
Diffuse 14 (8.8%) 0
Pathological Staging after Surgery 1| 0 38 (23.9%)
1 26 (16.4%) 0
11 32 (20.1%) 0
v 63 (39.6%) 0
Bormann Type 1 1 (0.6%) 0
2 21 (13.2%) 11 (6.9%)
3 94 (59.1%) 25 (15.7%)
4 5(3.1%) 2 (1.3%)

els and predict clinical outcomes [7,8]. Although several radiomics
based ML models have been reported to differentiate and stage
gastric cancer patients [9,10], these studies computed radiomics
features from the tumor region that is manually segmented from
one CT slice selected by the radiologist. Meanwhile, the correla-
tion analysis based method was used to determine a small set of
image features, which cannot eliminate the redundancy of the se-
lected features. Thus, discriminatory power and prediction accu-
racy of these ML models were limited. To overcome such limita-
tions, we in this study propose to develop and evaluate a new
computer-aided detection (CAD) scheme aiming to predict the risk
of PM among gastric cancer patients. First, our scheme segments
primary gastric tumor volume in 3D CT image data, which can bet-
ter compute image features related to the heterogeneity of the tu-
mors. Second, to reduce the dimensionality of feature space and
better identify orthogonal or non-redundant image features from a
large pool of initially computed radiomics features, we investigate
and apply a random projection algorithm (RPA). Third, to avoid bias
in generating feature vector, RPA is embedded in a multi-feature
fusion-based machine learning (ML) model to predict the risk of
PM, which is trained and tested using (1) a synthetic minority
oversampling technique (SMOTE) to balance numbers of cases in
two classes and (2) a leave-one-case-out (LOCO) cross-validation
method. The details of the study design, experimental procedures,
data analysis results, and discussions are presented in the follow-
ing sections of this article.

2. Materials and methods
2.1. Image dataset

In this study, we use a retrospective dataset of abdominal com-
puted tomography (CT) images. To avoid potential case selection
bias, the dataset initially contains 219 consecutive patients who
were diagnosed and treated with gastric cancer. Then, by exclud-
ing the cases that were unresectable or undetectable based on CT
examinations and poor image quality as determined by the radi-
ologists in the retrospective review, 159 cases are included in this
study dataset. Among these patients, 121 cases have PM, and 38
cases do not have PM. Table 1 summarizes the distribution of gen-
eral demographic information and several related clinical results of
these 159 patients in this dataset.

Each patient had an abdominal CT imaging examination during
the original cancer diagnosis before surgery. All CT examinations
were performed using a multidetector CT machine (GE Discovery
CT750 HD, GE Healthcare). Each patient is requested to fast from
food overnight and drank 600-1000ml water orally to distend the
stomach prior to the CT examination. The contrast-enhanced CT
images are obtained with a delay of 28 s (arterial phase), 55 s
(portal phase), and 120 s (venous phase) after administration of
infused 1.5 ml/kg body weight iodinated contrast agent (Optiray
320 mg I/mL, Bayer Schering Pharma) intravenously at a flow rate
of 2.5 ml/s. The CT scanning parameters include (1) tube volt-
age switching between 120 kVp and 140 KVp in spectral imaging
mode, (2) tube current automatically optimizing with the maxi-
mum limit of 200 mA, (3) tube rotation time of 0.76 - 0.80 s,
(4) detector collimation of 64 x 0.625 mm, (5) field of view with
350 - 500 mm, and (6) the image matrix with 512 x 512 pixels
and reconstruction thickness of 2.5 mm. The venous phase CT im-
ages were selected and used to segment tumors, compute image
features, and build the machine learning prediction model in this
study.

2.2. Tumor segmentation

By recognizing the heterogeneity of tumors in the clinical im-
ages, we modified and implemented a hybrid tumor segmentation
scheme that used a dynamic programming method [11,12] to adap-
tively identify growing thresholds of a multi-layer topographic re-
gion growing algorithm and initial contour in active contour al-
gorithm. Specifically, the tumor segmentation scheme involves the
following steps. First, a Weiner filter is applied to reduce image
noise. Second, an initial seed is placed at the center of the tumor
region of one CT slice in which the tumor has its most significant
area. To reduce inter-operator variability in choosing the initial
seed and increase the robustness of segmentation results demon-
strated in the previous study [13], a predefined window with the
size of (5,5) around the initial seed is automatically created. A pixel
with the minimum value inside the window is detected and se-
lected as the first seed point. Third, to automatically determine the
first threshold value for the region growing algorithm, a new pre-
defined window with size of (5,5), which ensures to fully locate
inside all tumor regions of our dataset and avoid potential risk of
growing leakage at the first growth layer, is created around the
new seed point. Then, the scheme computes the pixel value differ-
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Fig. 1. The block diagram of the 2D tumor region segmentation.

ences between the center pixel and boundary pixels and identifies
the maximum difference. Subsequently, the region growing thresh-
old is determined as T; = V¢ + 0.25 x Dpgx, Where V. is the pixel
value of the center pixel and Dpqx is the computed maximum pixel
value difference inside the bounding window. This threshold value
is applied to define the first layer of region growing to segment
tumor region depicting on one CT image slice.

Fourth, after determining the first layer of tumor region growth,
the growing threshold of the second layer is T, = T; + B8C; where
C; is the computed contrast of the first layer, and 8 is a coeffi-
cient (i.e., 0.5). This multi-layer region growing continues until the
growth ratio between two adjacent layers is two times bigger than
the size of the last growing layer. Last, after the region growing al-
gorithm stops, the scheme selects the boundary contour of the last
region growing layer as the initial region contour. The active con-
tour algorithm is followed to expand or shrink the contour curve
for the best fitting tumor boundary. Fig. 1 and Fig. 2 illustrate the
block diagram of this tumor segmentation scheme and an image
example of applying the above steps to segment a tumor region
depicting on one CT slice, respectively.

Subsequently, after segmenting the tumor region on one CT
slice, the CAD scheme continues to perform tumor region segmen-
tation by scanning in both up and down directions until no tumor
region is detected in the next adjacent CT slice. In this process,
the central point of the tumor region detected in the adjacent CT
slice is mapped into the new CT slice as the initial region growing
seed. Then, the tumor region segmentation in this targeted slice
is automatically performed from the mapped growing seed. Addi-
tionally, a tumor growing boundary condition is limited by the ad-
jacent slice to facilitate the multi-layer region-growing process and
avoid growth leakage. Fig. 3 shows an example of the segmentation
of tumor regions depicting several CT image slices of one case. In
this way, 3D tumor volume can be segmented and computed.

2.3. Feature extraction
Once 3D tumor volume is segmented, the CAD scheme is ap-

plied to compute a large set of radiomics-based image features,
which include 315 features extracted and computed from each seg-

mented 2D tumor region (ROI) depicting on one CT image slice.
These features were categorized into four main groups, includ-
ing (a) the grayscale-run length (GLRLM) features in which 44 2-
dimensional features are extracted. (b) The Gray Level Difference
Methods (GLDM) probability density function features in which
from each probability density function representing statistical tex-
ture features of ROI, four features of mean, median, standard devi-
ation, and variance are computed. (c) Wavelet domain features in
which the image is first decomposed into four components com-
prising low and high scale decomposition in either X or Y direc-
tion by wavelet transform [14]. Then, the GLCM features [15], as
well as 21 tumor density [16] and GLDM features [17], are ex-
tracted from those components. (d) Laplacian of Gaussian (LoG)
features in which a Gaussian smoothing filter is first applied to
reduce the sensitivity to the noise, and then the Laplacian filter
sharpens the image’s edge and highlights rapid intensity changes
inside the region [18]. Next, from the extracted points after apply-
ing the LoG filters, the mean, median, and standard deviation are
computed. Fig. 4 shows the flow diagram of the feature extraction
process.

After computing 2D features of all segmented tumor regions in
N involved CT image slice, CAD scheme computes each 3D feature
(EK)) as

N
FBkD:ZWiXI:sz (1)
i=1

where w; is the ratio of the segmented tumor volume on a ith slice
to the whole tumor volume segmented on all N involved CT slices.
The segmented tumor volume on a i th slice is computed by multi-
plying the segmented region size (2D) to the CT slice thickness. Fi-
nally, all 315 computed 3D feature values are normalized between
0 to 1 to reduce case-based reliance and weight all features evenly.

2.4. Feature dimensionality reduction using random projection
algorithm

Since the initial feature pool contains 315 image features, many
of them can be redundant (highly correlated) or irrelevant (with
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Fig. 2. The process of 2D tumor region segmentation.

Fig. 3. An Example of 3D segmentation of a lesion in 3 different slices.

lower performance). Hence, selecting a small set of optimal fea- pared to other feature reduction methods; however, empirical re-
tures to reduce the feature dimension and enhance learning accu- sults are sparse [19]. Meanwhile, RPA has been investigated and
racy is vital. In this study, we investigate and apply a novel im- tested in many engineering applications such as text [20] and face
age feature regeneration method of the Random Projection Algo- and object recognition [21] and yielded comparable results to con-
rithm (RPA). Theoretic analysis has indicated that the RPA has ad- ventional feature regeneration methods like principal component
vantages for its simplicity, high performance, and robustness com- analysis (PCA) [22]. Nevertheless, the advantage of employing RP
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Fig. 4. Diagram of feature extraction process.

methods over their alternative is that they generate more robust
results and computationally inexpensive [19,23].

In this study, we will apply RPA to generate optimal features
from the original large pool of radiomics features. Following is a
brief introduction of the RPA method. By considering each case as
a point in a k dimensional space, where k represents the number
of features, the Euclidian distance between two points can be ex-
pressed as follows:

IM—N| =

Regarding Formula (2), M = (my,..., my), and N = (ny,...ny) are
two points in the k dimensional space. Likewise, the volume of a
sphere with radius r and volume of V in k dimensional space is
defined as follows in Formula 3 [24]:

rk s

5T(5)

The normalization of the feature matrix between [0, 1] suggests
that all data can be included in a sphere with a radius of 1. The
important fact about a sphere with unit radius is that the more
increase in dimension, the more reduction in the volume (Formula
4). Simultaneously, the possible distance between the two points
remains at 2 [24].

Vk) = (3)

k
T2

kT (k

5r(5)
Additionally, according to the theory of the heavy-tailed distri-

bution, for a case like M = (my,..., my) in the space of features,

lim ~0

k— o0

(4)

considering features independent with an acceptable approxima-

tion, or almost perpendicular variables mapping to different axes,
k

with E(m;) = p;, Y. pi = u and E|(m; — p;)?| < p; for d = 2, 3, ...,
i=1

t2/6/4, then, a probability can be computed using Formula 5 [24]:

k —t2 t
prob{ |> m;—p| >t gMax(BeW,4x2?> (5)
i=1

The more the value of t increases, the less chance of a point be
out of that distance. Thus, M should be focused around the mean
value. In particular, according to Formula 4 and 5, with a satisfac-
tory estimation, all data are contained in a sphere of unit size, and
they are focused around their mean value. As a result, if the di-
mension increases, the volume of the sphere would close to zero.
Therefore, the difference between the cases is not enough for ac-
curate classification.

According to the above analysis, the larger the initial feature
vector size, the bigger the space dimension is. Hence, most of the
data is focused around the center, which leads to less difference
between the features. Consequently, to reduce the feature dimen-
sion, a powerful technique is the one that reduces the dimension-
ality of features while preserves the distance between the points,
indicating rough preservation of the vast amount of information. If
we implement a conventional feature selection method and choose
a d-dimensional sup-space of the initial feature vector randomly, it
is expected that all the projected distances in the new space are
within a determined scale-factor of the initial k-dimensional space
. Thus, it is probable that after removing the redundant features,
the accuracy would not increase due to the fact that the divergence
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between the points is not significant enough to consider as a ro-
bust model.

To address the concern discussed above and to optimize the
feature space, Johnson-Lindenstrauss Lemma’s theory can be ap-
plied in RPA [25]. This theory states that for any 0 < ¢ < 1, and
for any number of cases as t, which are like the points in k-
dimensional space (R¥), if assuming d as a positive integer, Formula
6 can be used to compute this integer number [25]:

d >4 00 (6)

= €2 3
5-9)

Afterward, for any set W of t points in Rk, for all zz w e W,
it is revealed that there is a map, or random projection function

like f: R¥ — R4, which keeps the distance determined by Formula
7 [25]:

(I-e)lz—wf < [f@) - fw)]* < A+ e)|z—w/? (7)

The above approximation also can be achieved from Formula 8
as follows [25]:

If(2) - fw)? If(2) — fw)[?
(1+ ¢€) (1-¢)

As demonstrated in Formula 8, the distance between the set of
points in the lower-dimension space is roughly close to the dis-
tance in high-dimensional space. The Lemma theory declares that
it is feasible to project a set of points from a high-dimensional
space into a lower-dimensional space, as the distances between the
points are approximately preserved.

As a result, the above analysis suggests that if the initial set
of features are projected into space with a lower-dimensional sub-
space using the random projection method, the distances between
points are preserved under better contrast. Hence, it may improve
the classification accuracy between the features of two classes rep-
resenting cases either with or without PM under low risk of over-
fitting ML models.

In this study, we also investigate whether using RPA can yield a
better result in comparison to several commonly used feature di-
mensionality reduction methods used in the medical imaging in-
formatics field, including principal component analysis (PCA) [26],
least absolute shrinkage, and selection operator (LASSO) [27], max-
imum relevance and minimum redundancy (MRMR) [28], and re-
cursive feature elimination (RFE) [29]. All extracted features in the
above section are fed into the methods of RPA, PCA, LASSO, MRMR,
and RFE. Each method generates 20 optimal features out of the ini-
tially large pool of 315 features.

<lz-w]* <

(8)

2.5. Machine learning model

To classify between the study cases with or without PM, we
build a multi-feature fusion-based machine learning model. How-
ever, due to the unbalance of our dataset, which includes 121 PM
cases and 38 non-PM cases, we apply a synthetic minority over-
sampling technique (SMOTE) algorithm [30] to rebalance the origi-
nal image dataset. The advantages of using SMOTE to develop ma-
chine learning models in medical images have been well investi-
gated and demonstrated in many previous studies (including those
conducted by researchers in our lab) [31-33]. In this study, we
apply the SMOTE method to generate 83 synthetic non-PM cases.
Thus, the dataset is expanded to 242 cases, including 121 PM cases
and 121 non-PM cases.

After addressing the imbalance dataset, we select and imple-
ment the Gradient Boosting Machine (GBM) to train an optimal
machine learning model to predict the risk of advanced gastric
cancer patients having PM. The GBM model is a popular machine
learning algorithm that has proven effective at classifying complex

Computer Methods and Programs in Biomedicine 200 (2021) 105937

Table 2
The performance comparison of five GBM models optimized using five different
feature selection and reduction methods.

Precision  Sensitivity ~ Specificity =~ Accuracy  AUC
LASSO 38.9% 31.1% 80.0% 65.8% 0.59 + 0.013
PCA 38.5% 64.1% 65.5% 65.2% 0.58 + 0.021
RFE 56.5% 62.5% 51.2% 56.9% 0.60 + 0.020
MRMR  50.0% 32.7% 82.0% 64.5% 0.60 £+ 0.017
RPA 65.8% 43.1% 87.1% 71.2% 0.69 + 0.019
Table 3

The comparison of two GBM model perfor-
mance between using 2D and 3D image fea-
tures generated using the RPA method.

AUC Accuracy

0.66+0.017  68.4%
0.69+0.019  71.2%

2D features
3D features

datasets and often first in class with predictive accuracy [34]. Un-
der a hyperparameter tuning, the GBM model is implemented to
achieve a low computational cost and high robustness in detec-
tion results as well. Additionally, to decrease the case partition and
feature selection (or generation) bias, we use a leave-one-case-out
(LOCO) based cross-validation method to train and test the GBM
model. In each LOCO cycle, PRA and SMOTE are embedded in the
training process. Then, one case not involved in the training cy-
cle is tested by the GBM model trained using all other cases in
the dataset. The model produces a prediction score for each test-
ing case ranging from 0 to 1. A higher score indicates a higher risk
of PM. The prediction performance is evaluated using a receiver
operating characteristic (ROC) method after discarding all SMOTE
generated non-PM training samples. The areas under ROC curves
(AUC) and overall prediction accuracy after applying an operating
threshold (T = 0.5) on the GBM model generated prediction scores
are used as two performance evaluation indices. Additionally, Co-
hen’s Kappa coefficient value is also computed for evaluating the
performance of the CAD scheme. High Cohen’s Kappa coefficient
value (ranging from zero to one) illustrates high robustness and
less randomness in the predicted results [35,36].

In summary, Fig. 5 shows a complete flow chat of using our
CAD scheme to process images, compute optimal features, and
train the GBM model in which the RPA and SMOTE are embedded
inside the LOCO process. In this study, the segmentation and fea-
ture extraction steps were performed using MATLAB R2019a pack-
age, and the feature reduction and classifications were done using
Python 3.7.

3. Results

Fig. 6 presents five ROC curves generated by the GBM models
embedded with five different feature reduction methods (LASSO,
PCA, RFE, RPA, MRMR). Table 2 shows the performance compari-
son between using RPA and the other four feature selection meth-
ods. The AUC value and the overall prediction accuracy of the
GBM model trained using RPA with 3D image features as input are
0.69+0.019 and 71.2%, respectively. Moreover, the precision, sensi-
tivity, and specificity of the proposed method are 65.78%, 43.101%,
and 87.12%, respectively. The results indicate that using RPA leads
to generate an optimal image feature vector that can build a GBM
model with significantly higher prediction accuracy (p < 0.05) than
using the GBM models optimized using the other four feature op-
timization methods.

Fig. 7 shows two ROC curves, and Table 3 reports the prediction
performance values to compare two GBM models trained using
2D features computed from the largest tumor region segmented
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Fig. 5. The flowchart of the proposed CAD scheme.
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Fig. 6. Comparison of five ROC plots generated using GBM models optimized using five different feature selection or reduction methods.

from one CT image slice and the 3D features computed from the
segmented tumor volumes. In these two GBM models, the RPA
method is used to select and generate optimal features. The re-
sults demonstrate that using 3D image features yields significantly
higher performance than using 2D features (p < 0.05) in predicting
the risk of gastric cancer cases with PM.

In addition, we also build and compare several other types of
ML models, including logistic regression, support vector machine
(SVM), random forest, and decision tree. All models are trained
and tested using the same LOCO cross-validation method embed-
ded with RPA and SMOTE schemes. Table 4 and Fig. 8 present the
results to compare the prediction performance of five ML models,
which shows that GBM yields the highest accuracy than the other
four ML models. However, AUC values between GBM, SVM, and lo-
gistic regression-based ML models are not statistically significantly
different (p > 0.05).

4. Discussion

CT is the most popular imaging modality to detect and diag-
nose gastric cancer, and it may also provide a non-invasive alter-

Table 4

Comparison of prediction performance of five ML

models.

AUC value  Accuracy

SVM 0.66 64.55%
Logistic Regression  0.68 61.93%
Random Forest 0.63 69.03%
Decision Tree 0.56 65.16%
GBM 0.69 71.15%

native method to predict the risk of PM in advanced gastric can-
cer patients. Despite the potential advantages of using CT to de-
tect or predict the risk of PM, the efficacy of radiologists in reading
and interpreting CT images for PM detection is insufficient [37]. Al-
though studies have suggested that developing and applying CAD
schemes integrated with the radiomics concept and ML model is
beneficial and may provide radiologists a second opinion to more
accurately detect and diagnose different abnormalities [38], devel-
oping ML models using a large number of radiomics features and
small training dataset remains a difficult task. In this study, we ex-
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Fig. 7. Comparison of two ROC plots generated by two GBM models optimized us-
ing 2D and 3D features generated using the RPA method, respectively.

plore a new approach to develop a new CAD scheme or ML model
with several unique characteristics and novel ideas in feature ex-
traction and ML model optimization to improve accuracy in de-
tecting advanced gastric patients with PM.

First, in a previous study conducted in this area, the authors
performed manual segmentation of gastric cancer tumor regions
from the single CT image slices [39]. However, manual segmen-
tation of tumor regions is often inconsistent with large inter-
observer variability due to the fuzzy boundary of the tumor re-
gions, which makes the computed image features also inconsis-
tent or not reproducible. Thus, the prediction accuracy may be af-
fected or not robust. To solve this issue, we in our study devel-
oped an interactive CAD scheme with a graphical user interface
(GUI) to initiate the segmentation of tumor regions from CT im-
ages. A user only needs to place an initial seed around the cen-
ter of the tumor region that has the largest size in one CT slice.
CAD scheme then segments tumor regions on all involved CT im-
age slices automatically. The segmentation results can also be visu-
alized by the human eyes on the GUI window. Although we have
designed and installed a correction function icon in the GUI and
the user can activate this function to order CAD scheme correct-
ing the segmentation errors (if any), the results in this study show

Computer Methods and Programs in Biomedicine 200 (2021) 105937

that the CAD scheme can achieve satisfactory results on automati-
cally segmenting all 3,305 tumor regions from all 159 cases in our
dataset.

Second, although the previous study [40] has reported devel-
oping a radiomics based ML model to detect and diagnose gastric
cancer using CT images, in that study, the Authors used image fea-
tures computed just from one manually selected CT image slice,
which may not accurately represent image features of the entire
tumor. To address this issue, we conduct the first study that devel-
ops and tests a new ML model using 3D image features. Our study
results support our hypothesis that using 2D image features ex-
tracted from only one CT slice is not sufficient enough to represent
the heterogonous characteristics of the tumors, while using 3D im-
age features can yield significantly higher prediction performance.
Specifically, in this study, we have performed 3D tumor segmenta-
tion and extracted 3D image features to detect or predict the risk
of advanced gastric patients having PM. As shown in Table 3, the
prediction performance of the GBM model trained using 3D fea-
tures yields AUC=0.694+0.019 and an accuracy of 71.2%, which are
significantly higher than the GBM model trained using 2D features
with AUC=0.66+0.017 and the accuracy of 68.4% (p < 0.05), re-
spectively.

Third, in developing CAD schemes to train ML models, identify-
ing a small and efficient set of image features plays a critical role
[41,42]; therefore, in previous studies, different feature dimension-
ality reduction methods have been investigated [43,44]. Although
these studies made many improvements in optimizing the fea-
ture vectors, there is a significant challenge of achieving small fea-
ture vectors representing the complex and non-linear image fea-
ture space. In this study, we investigate the feasibility of apply-
ing the RPA to the medical imaging informatics field in optimizing
the CAD scheme or ML model. Our study results show that RPA
is a promising technique to reduce the dimensionality of a set of
points lying in Euclidian space for very heterogeneous feature data,
which commonly occurs in medical images and has advantages to
achieve high robustness in classification and low risk of overfitting.
Fig. 6 illustrates that the prediction performance of the GBM model
embedded with RPA yields significantly higher performance than
other GBM models embedded with the other four popular feature
reduction methods (PCA, LASSO, MRMR, and RFE). As presented in
Table 2, the AUC value after applying the RPA reached the highest
prediction accuracy of 71.2% than the other four feature reduction
methods. Moreover, the computed Cohen’s Kappa coefficient value
is 0.68, which indicates the reliability or robustness of the GBM
model optimized using the RPA method.

ROC Curve Analysis
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Fig. 8. Comparison of ROC plots of five ML models.
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Fourth, since many ML models have been developed and used
in medical imaging informatics or CAD fields, selecting which ML
model can also be a challenging issue. In this study, we also com-
pare the prediction performance of five popular ML models. The
results show that many different ML models can yield very com-
parable performance, as shown in Table 4 and Fig. 8. However,
comparing with the data presented in Table 2, we can find that
selecting or generating optimal features plays a more critical role
or contribution than choosing a different ML model. Thus, combing
the above new observations of this study, we demonstrate that due
to the very complicated distribution of radiomics features com-
puted from medical images, RPA is a promising and more powerful
technique applicable to generate optimal feature vectors for better
training ML models used in CAD schemes of medical images.

Despite the encouraging results, we also notice some limita-
tions in this study. First, the dataset used in this study is relatively
small; hence to validate the results of this study, larger datasets
are required before being tested in future prospective clinical stud-
ies. Second, although in this study, we have used synthetic data
to balance the dataset and reduce the impact of an imbalanced
dataset, using the SMOTE technique is just efficient for the low di-
mensional data, and it may not be appropriate or optimal for high
dimensional data [45]. Third, in the initial pool of features, we only
extracted a limited number of 315 statistics and textural features,
which are much less than the number of features computed based
on recently developed radiomics concepts and technology in other
studies [46]. Thus, more texture features can be explored in future
studies to increase the diversity of the initial feature pool, which
may also increase the chance of selecting or generating more opti-
mal features to significantly improve the accuracy of the ML model
to predict the risk of PM. To overcome the above limitations, more
studies and progress are needed in this field.

In summary, regardless of the above limitations, this is a valid
proof-of-concept study that reveals a new and promising approach
to identify and generate optimal feature vectors for training ML
models implemented in CAD schemes of medical images. Since op-
timizing the feature vector is one of the critical steps of building
an optimal ML model using the radiomics concept, the presented
method in this study is not only limited to the detection of ad-
vanced gastric patients with PM, and it can also be beneficial for
other medical imaging studies of developing ML models to detect
different types of cancers or abnormalities in the future.
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