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Background and Objective: Non-invasively predicting the risk of cancer metastasis before surgery can play 

an essential role in determining which patients can benefit from neoadjuvant chemotherapy. This study 

aims to investigate and test the advantages of applying a random projection algorithm to develop and 

optimize a radiomics-based machine learning model to predict peritoneal metastasis in gastric cancer 

patients using a small and imbalanced computed tomography (CT) image dataset. 

Methods: A retrospective dataset involving CT images acquired from 159 patients is assembled, includ- 

ing 121 and 38 cases with and without peritoneal metastasis, respectively. A computer-aided detection 

scheme is first applied to segment primary gastric tumor volumes and initially compute 315 image fea- 

tures. Then, five gradients boosting machine (GBM) models embedded with five feature selection methods 

(including random projection algorithm, principal component analysis, least absolute shrinkage, and se- 

lection operator, maximum relevance and minimum redundancy, and recursive feature elimination) along 

with a synthetic minority oversampling technique, are built to predict the risk of peritoneal metastasis. 

All GBM models are trained and tested using a leave-one-case-out cross-validation method. 

Results: Results show that the GBM model embedded with a random projection algorithm yields a sig- 

nificantly higher prediction accuracy (71.2%) than the other four GBM models (p < 0.05). The precision, 

sensitivity, and specificity of this optimal GBM model are 65.78%, 43.10%, and 87.12%, respectively. 

Conclusions: This study demonstrates that CT images of the primary gastric tumors contain discrimi- 

natory information to predict the risk of peritoneal metastasis, and a random projection algorithm is a 

promising method to generate optimal feature vector, improving the performance of machine learning 

based prediction models. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Although the occurrence of gastric cancer has declined recently, 

t remains the third leading cause of cancer-related death world- 

ide [1] . While surgery remains the only curative treatment op- 

ion, preoperative neoadjuvant chemotherapy (NAC) has demon- 

trated favorable results with increased therapeutic resection rates 

nd improved survival [2] . Preventing the adverse effect of NAC, 

atients with different disease stages must be distinguished from 

ach other [3] because, for each step of the disease, the treatment 
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ould be different [4] . Recent studies demonstrated that applying 

reoperative NAC for advanced gastric cancer patients with peri- 

oneal metastasis (PM) yielded a much better clinical outcome and 

nhanced the overall survival rate [ 5 , 6 ]. Thus, an accurate assess-

ent of the presence of the PM is essential for the selection of 

ppropriate patients for NAC. Since the overall accuracies of sub- 

ectively reading endoscopic ultrasound and computed tomography 

CT) images are not completely reliable [ 3 , 4 ], an alternative tech- 

ique is needed to facilitate the assessment of tumor stages and 

he risk of PM. 

Recently, the novel radiomics technique has been applied to ex- 

ract quantitative information from medical images with a large 

ool of image features, and the data mining of image feature pool 

ffers an exciting approach to build machine learning (ML) mod- 
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Table 1 

Distribution of demographic information and several related clinical results of study cases in 

the dataset. 

Category Cases with PM Cases without PM 

Total Cases 121 38 

Age (years old) < 45 11 (6.9%) 5 (3.1%) 

45 – 65 72 (45.2%) 23 (14.4%) 

> 65 38 (23.8%) 10 (6.2%) 

Mean ± SD 59.49 ± 11.97 59.11 ± 8.75 

Median 61 60 

Gender Men 94 (59.1%) (18.8%) 

Women 27 (16.9%) 8 (5.0%) 

Tumor Location Upper 37 (23.2%) 19 (11.9%) 

Medium 20 (12.6%) 7 (4.4%) 

Lower 50 (31.4%) 12 (7.5%) 

Diffuse 14 (8.8%) 0 

Pathological Staging after Surgery I 0 38 (23.9%) 

II 26 (16.4%) 0 

III 32 (20.1%) 0 

IV 63 (39.6%) 0 

Bormann Type 1 1 (0.6%) 0 

2 21 (13.2%) 11 (6.9%) 

3 94 (59.1%) 25 (15.7%) 

4 5 (3.1%) 2 (1.3%) 
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ls and predict clinical outcomes [ 7 , 8 ]. Although several radiomics 

ased ML models have been reported to differentiate and stage 

astric cancer patients [ 9 , 10 ], these studies computed radiomics 

eatures from the tumor region that is manually segmented from 

ne CT slice selected by the radiologist. Meanwhile, the correla- 

ion analysis based method was used to determine a small set of 

mage features, which cannot eliminate the redundancy of the se- 

ected features. Thus, discriminatory power and prediction accu- 

acy of these ML models were limited. To overcome such limita- 

ions, we in this study propose to develop and evaluate a new 

omputer-aided detection (CAD) scheme aiming to predict the risk 

f PM among gastric cancer patients. First, our scheme segments 

rimary gastric tumor volume in 3D CT image data, which can bet- 

er compute image features related to the heterogeneity of the tu- 

ors. Second, to reduce the dimensionality of feature space and 

etter identify orthogonal or non-redundant image features from a 

arge pool of initially computed radiomics features, we investigate 

nd apply a random projection algorithm (RPA). Third, to avoid bias 

n generating feature vector, RPA is embedded in a multi-feature 

usion-based machine learning (ML) model to predict the risk of 

M, which is trained and tested using (1) a synthetic minority 

versampling technique (SMOTE) to balance numbers of cases in 

wo classes and (2) a leave-one-case-out (LOCO) cross-validation 

ethod. The details of the study design, experimental procedures, 

ata analysis results, and discussions are presented in the follow- 

ng sections of this article. 

. Materials and methods 

.1. Image dataset 

In this study, we use a retrospective dataset of abdominal com- 

uted tomography (CT) images. To avoid potential case selection 

ias, the dataset initially contains 219 consecutive patients who 

ere diagnosed and treated with gastric cancer. Then, by exclud- 

ng the cases that were unresectable or undetectable based on CT 

xaminations and poor image quality as determined by the radi- 

logists in the retrospective review, 159 cases are included in this 

tudy dataset. Among these patients, 121 cases have PM, and 38 

ases do not have PM. Table 1 summarizes the distribution of gen- 

ral demographic information and several related clinical results of 

hese 159 patients in this dataset. 
2 
Each patient had an abdominal CT imaging examination during 

he original cancer diagnosis before surgery. All CT examinations 

ere performed using a multidetector CT machine (GE Discovery 

T750 HD, GE Healthcare). Each patient is requested to fast from 

ood overnight and drank 60 0-10 0 0ml water orally to distend the 

tomach prior to the CT examination. The contrast-enhanced CT 

mages are obtained with a delay of 28 s (arterial phase), 55 s 

portal phase), and 120 s (venous phase) after administration of 

nfused 1.5 ml/kg body weight iodinated contrast agent (Optiray 

20 mg I/mL, Bayer Schering Pharma) intravenously at a flow rate 

f 2.5 ml/s. The CT scanning parameters include (1) tube volt- 

ge switching between 120 kVp and 140 KVp in spectral imaging 

ode, (2) tube current automatically optimizing with the maxi- 

um limit of 200 mA, (3) tube rotation time of 0.76 – 0.80 s, 

4) detector collimation of 64 × 0.625 mm, (5) field of view with 

50 – 500 mm, and (6) the image matrix with 512 × 512 pixels 

nd reconstruction thickness of 2.5 mm. The venous phase CT im- 

ges were selected and used to segment tumors, compute image 

eatures, and build the machine learning prediction model in this 

tudy. 

.2. Tumor segmentation 

By recognizing the heterogeneity of tumors in the clinical im- 

ges, we modified and implemented a hybrid tumor segmentation 

cheme that used a dynamic programming method [ 11 , 12 ] to adap-

ively identify growing thresholds of a multi-layer topographic re- 

ion growing algorithm and initial contour in active contour al- 

orithm. Specifically, the tumor segmentation scheme involves the 

ollowing steps. First, a Weiner filter is applied to reduce image 

oise. Second, an initial seed is placed at the center of the tumor 

egion of one CT slice in which the tumor has its most significant 

rea. To reduce inter-operator variability in choosing the initial 

eed and increase the robustness of segmentation results demon- 

trated in the previous study [13] , a predefined window with the 

ize of (5,5) around the initial seed is automatically created. A pixel 

ith the minimum value inside the window is detected and se- 

ected as the first seed point. Third, to automatically determine the 

rst threshold value for the region growing algorithm, a new pre- 

efined window with size of (5,5), which ensures to fully locate 

nside all tumor regions of our dataset and avoid potential risk of 

rowing leakage at the first growth layer, is created around the 

ew seed point. Then, the scheme computes the pixel value differ- 
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Fig. 1. The block diagram of the 2D tumor region segmentation. 
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nces between the center pixel and boundary pixels and identifies 

he maximum difference. Subsequently, the region growing thresh- 

ld is determined as T 1 = V c + 0.25 × D max , where V c is the pixel

alue of the center pixel and D max is the computed maximum pixel 

alue difference inside the bounding window. This threshold value 

s applied to define the first layer of region growing to segment 

umor region depicting on one CT image slice. 

Fourth, after determining the first layer of tumor region growth, 

he growing threshold of the second layer is T 2 = T 1 + βC 1 where

 1 is the computed contrast of the first layer, and β is a coeffi- 

ient (i.e., 0.5). This multi-layer region growing continues until the 

rowth ratio between two adjacent layers is two times bigger than 

he size of the last growing layer. Last, after the region growing al- 

orithm stops, the scheme selects the boundary contour of the last 

egion growing layer as the initial region contour. The active con- 

our algorithm is followed to expand or shrink the contour curve 

or the best fitting tumor boundary. Fig. 1 and Fig. 2 illustrate the 

lock diagram of this tumor segmentation scheme and an image 

xample of applying the above steps to segment a tumor region 

epicting on one CT slice, respectively. 

Subsequently, after segmenting the tumor region on one CT 

lice, the CAD scheme continues to perform tumor region segmen- 

ation by scanning in both up and down directions until no tumor 

egion is detected in the next adjacent CT slice. In this process, 

he central point of the tumor region detected in the adjacent CT 

lice is mapped into the new CT slice as the initial region growing 

eed. Then, the tumor region segmentation in this targeted slice 

s automatically performed from the mapped growing seed. Addi- 

ionally, a tumor growing boundary condition is limited by the ad- 

acent slice to facilitate the multi-layer region-growing process and 

void growth leakage. Fig. 3 shows an example of the segmentation 

f tumor regions depicting several CT image slices of one case. In 

his way, 3D tumor volume can be segmented and computed. 

.3. Feature extraction 

Once 3D tumor volume is segmented, the CAD scheme is ap- 

lied to compute a large set of radiomics-based image features, 

hich include 315 features extracted and computed from each seg- 
3 
ented 2D tumor region (ROI) depicting on one CT image slice. 

hese features were categorized into four main groups, includ- 

ng (a) the grayscale-run length (GLRLM) features in which 44 2- 

imensional features are extracted. (b) The Gray Level Difference 

ethods (GLDM) probability density function features in which 

rom each probability density function representing statistical tex- 

ure features of ROI, four features of mean, median, standard devi- 

tion, and variance are computed. (c) Wavelet domain features in 

hich the image is first decomposed into four components com- 

rising low and high scale decomposition in either X or Y direc- 

ion by wavelet transform [14] . Then, the GLCM features [15] , as 

ell as 21 tumor density [16] and GLDM features [17] , are ex- 

racted from those components. (d) Laplacian of Gaussian (LoG) 

eatures in which a Gaussian smoothing filter is first applied to 

educe the sensitivity to the noise, and then the Laplacian filter 

harpens the image’s edge and highlights rapid intensity changes 

nside the region [18] . Next, from the extracted points after apply- 

ng the LoG filters, the mean, median, and standard deviation are 

omputed. Fig. 4 shows the flow diagram of the feature extraction 

rocess. 

After computing 2D features of all segmented tumor regions in 

 involved CT image slice, CAD scheme computes each 3D feature 

 F k 
3 D 

) as 

 

k 
3 D = 

N ∑ 

i =1 

w i × F k 2 D (1) 

here w i is the ratio of the segmented tumor volume on a i th slice

o the whole tumor volume segmented on all N involved CT slices. 

he segmented tumor volume on a i th slice is computed by multi- 

lying the segmented region size (2D) to the CT slice thickness. Fi- 

ally, all 315 computed 3D feature values are normalized between 

 to 1 to reduce case-based reliance and weight all features evenly. 

.4. Feature dimensionality reduction using random projection 

lgorithm 

Since the initial feature pool contains 315 image features, many 

f them can be redundant (highly correlated) or irrelevant (with 
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Fig. 2. The process of 2D tumor region segmentation. 

Fig. 3. An Example of 3D segmentation of a lesion in 3 different slices. 
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ower performance). Hence, selecting a small set of optimal fea- 

ures to reduce the feature dimension and enhance learning accu- 

acy is vital. In this study, we investigate and apply a novel im- 

ge feature regeneration method of the Random Projection Algo- 

ithm (RPA). Theoretic analysis has indicated that the RPA has ad- 

antages for its simplicity, high performance, and robustness com- 
4 
ared to other feature reduction methods; however, empirical re- 

ults are sparse [19] . Meanwhile, RPA has been investigated and 

ested in many engineering applications such as text [20] and face 

nd object recognition [21] and yielded comparable results to con- 

entional feature regeneration methods like principal component 

nalysis (PCA) [22] . Nevertheless, the advantage of employing RP 
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Fig. 4. Diagram of feature extraction process. 
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ethods over their alternative is that they generate more robust 

esults and computationally inexpensive [ 19 , 23 ]. 

In this study, we will apply RPA to generate optimal features 

rom the original large pool of radiomics features. Following is a 

rief introduction of the RPA method. By considering each case as 

 point in a k dimensional space, where k represents the number 

f features, the Euclidian distance between two points can be ex- 

ressed as follows: 

 

M − N | = 

√ 

k ∑ 

i =1 

( m i − n i ) 
2 (2) 

Regarding Formula (2), M = ( m 1 ,…, m k ), and N = ( n 1 ,…n k ) are

wo points in the k dimensional space. Likewise, the volume of a 

phere with radius r and volume of V in k dimensional space is 

efined as follows in Formula 3 [24] : 

 ( k ) = 

r k π
k 
2 

k 
2 
�
(

k 
2 

) (3) 

The normalization of the feature matrix between [0, 1] suggests 

hat all data can be included in a sphere with a radius of 1. The

mportant fact about a sphere with unit radius is that the more 

ncrease in dimension, the more reduction in the volume (Formula 

). Simultaneously, the possible distance between the two points 

emains at 2 [24] . 

lim 

 →∞ 

( 

π
k 
2 

k 
2 
�
(

k 
2 

)
) 

∼= 

0 (4) 

Additionally, according to the theory of the heavy-tailed distri- 

ution, for a case like M = ( m ,…, m ) in the space of features,
1 k 

5 
onsidering features independent with an acceptable approxima- 

ion, or almost perpendicular variables mapping to different axes, 

ith E ( m i ) = p i , 
k ∑ 

i =1 

p i = μ and E |( m i − p i ) 
d | ≤ p i for d = 2, 3, …,

 

2 /6 μ, then, a probability can be computed using Formula 5 [24] :

prob 

( 

∣∣∣∣∣
k ∑ 

i =1 

m i − μ

∣∣∣∣∣ ≥ t 

) 

≤ Max 

(
3 e 

−t 2 

12 μ , 4 × 2 

−t 
e 

)
(5) 

The more the value of t increases, the less chance of a point be 

ut of that distance. Thus, M should be focused around the mean 

alue. In particular, according to Formula 4 and 5, with a satisfac- 

ory estimation, all data are contained in a sphere of unit size, and 

hey are focused around their mean value. As a result, if the di- 

ension increases, the volume of the sphere would close to zero. 

herefore, the difference between the cases is not enough for ac- 

urate classification. 

According to the above analysis, the larger the initial feature 

ector size, the bigger the space dimension is. Hence, most of the 

ata is focused around the center, which leads to less difference 

etween the features. Consequently, to reduce the feature dimen- 

ion, a powerful technique is the one that reduces the dimension- 

lity of features while preserves the distance between the points, 

ndicating rough preservation of the vast amount of information. If 

e implement a conventional feature selection method and choose 

 d-dimensional sup-space of the initial feature vector randomly, it 

s expected that all the projected distances in the new space are 

ithin a determined scale-factor of the initial k -dimensional space 

 Thus, it is probable that after removing the redundant features, 

he accuracy would not increase due to the fact that the divergence 
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Table 2 

The performance comparison of five GBM models optimized using five different 

feature selection and reduction methods. 

Precision Sensitivity Specificity Accuracy AUC 

LASSO 38.9% 31.1% 80.0% 65.8% 0.59 ± 0.013 

PCA 38.5% 64.1% 65.5% 65.2% 0.58 ± 0.021 

RFE 56.5% 62.5% 51.2% 56.9% 0.60 ± 0.020 

MRMR 50.0% 32.7% 82.0% 64.5% 0.60 ± 0.017 

RPA 65.8% 43.1% 87.1% 71.2% 0.69 ± 0.019 

Table 3 

The comparison of two GBM model perfor- 

mance between using 2D and 3D image fea- 

tures generated using the RPA method. 

AUC Accuracy 

2D features 0.66 ±0.017 68.4% 

3D features 0.69 ±0.019 71.2% 
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etween the points is not significant enough to consider as a ro- 

ust model. 

To address the concern discussed above and to optimize the 

eature space, Johnson-Lindenstrauss Lemma’s theory can be ap- 

lied in RPA [25] . This theory states that for any 0 < ε < 1, and

or any number of cases as t , which are like the points in k -

imensional space ( R k ), if assuming d as a positive integer, Formula 

 can be used to compute this integer number [25] : 

 ≥ 4 

ln t (
ε2 

2 
− ε3 

3 

) (6) 

Afterward, for any set W of t points in R k , for all z, w ∈ W ,

t is revealed that there is a map, or random projection function 

ike f: R k → R d , which keeps the distance determined by Formula 

 [25] : 

 

1 − ∈ ) | z − w | 2 ≤ | f ( z ) − f ( w ) | 2 ≤ ( 1+ ∈ ) | z − w | 2 (7) 

The above approximation also can be achieved from Formula 8 

s follows [25] : 

| f ( z ) − f ( w ) | 2 
( 1+ ∈ ) 

≤ | z − w | 2 ≤ | f ( z ) − f ( w ) | 2 
( 1 − ∈ ) 

(8) 

As demonstrated in Formula 8, the distance between the set of 

oints in the lower-dimension space is roughly close to the dis- 

ance in high-dimensional space. The Lemma theory declares that 

t is feasible to project a set of points from a high-dimensional 

pace into a lower-dimensional space, as the distances between the 

oints are approximately preserved. 

As a result, the above analysis suggests that if the initial set 

f features are projected into space with a lower-dimensional sub- 

pace using the random projection method, the distances between 

oints are preserved under better contrast. Hence, it may improve 

he classification accuracy between the features of two classes rep- 

esenting cases either with or without PM under low risk of over- 

tting ML models. 

In this study, we also investigate whether using RPA can yield a 

etter result in comparison to several commonly used feature di- 

ensionality reduction methods used in the medical imaging in- 

ormatics field, including principal component analysis (PCA) [26] , 

east absolute shrinkage, and selection operator (LASSO) [27] , max- 

mum relevance and minimum redundancy (MRMR) [28] , and re- 

ursive feature elimination (RFE) [29] . All extracted features in the 

bove section are fed into the methods of RPA , PCA , LASSO, MRMR, 

nd RFE. Each method generates 20 optimal features out of the ini- 

ially large pool of 315 features. 

.5. Machine learning model 

To classify between the study cases with or without PM, we 

uild a multi-feature fusion-based machine learning model. How- 

ver, due to the unbalance of our dataset, which includes 121 PM 

ases and 38 non-PM cases, we apply a synthetic minority over- 

ampling technique (SMOTE) algorithm [30] to rebalance the origi- 

al image dataset. The advantages of using SMOTE to develop ma- 

hine learning models in medical images have been well investi- 

ated and demonstrated in many previous studies (including those 

onducted by researchers in our lab) [31–33] . In this study, we 

pply the SMOTE method to generate 83 synthetic non-PM cases. 

hus, the dataset is expanded to 242 cases, including 121 PM cases 

nd 121 non-PM cases. 

After addressing the imbalance dataset, we select and imple- 

ent the Gradient Boosting Machine (GBM) to train an optimal 

achine learning model to predict the risk of advanced gastric 

ancer patients having PM. The GBM model is a popular machine 

earning algorithm that has proven effective at classifying complex 
6 
atasets and often first in class with predictive accuracy [34] . Un- 

er a hyperparameter tuning, the GBM model is implemented to 

chieve a low computational cost and high robustness in detec- 

ion results as well. Additionally, to decrease the case partition and 

eature selection (or generation) bias, we use a leave-one-case-out 

LOCO) based cross-validation method to train and test the GBM 

odel. In each LOCO cycle, PRA and SMOTE are embedded in the 

raining process. Then, one case not involved in the training cy- 

le is tested by the GBM model trained using all other cases in 

he dataset. The model produces a prediction score for each test- 

ng case ranging from 0 to 1. A higher score indicates a higher risk 

f PM. The prediction performance is evaluated using a receiver 

perating characteristic (ROC) method after discarding all SMOTE 

enerated non-PM training samples. The areas under ROC curves 

AUC) and overall prediction accuracy after applying an operating 

hreshold ( T = 0.5) on the GBM model generated prediction scores 

re used as two performance evaluation indices. Additionally, Co- 

en’s Kappa coefficient value is also computed for evaluating the 

erformance of the CAD scheme. High Cohen’s Kappa coefficient 

alue (ranging from zero to one) illustrates high robustness and 

ess randomness in the predicted results [ 35 , 36 ]. 

In summary, Fig. 5 shows a complete flow chat of using our 

AD scheme to process images, compute optimal features, and 

rain the GBM model in which the RPA and SMOTE are embedded 

nside the LOCO process. In this study, the segmentation and fea- 

ure extraction steps were performed using MATLAB R2019a pack- 

ge, and the feature reduction and classifications were done using 

ython 3.7. 

. Results 

Fig. 6 presents five ROC curves generated by the GBM models 

mbedded with five different f eature reduction methods (LASSO, 

CA , RFE, RPA , MRMR). Table 2 shows the performance compari- 

on between using RPA and the other four feature selection meth- 

ds. The AUC value and the overall prediction accuracy of the 

BM model trained using RPA with 3D image features as input are 

.69 ±0.019 and 71.2%, respectively. Moreover, the precision, sensi- 

ivity, and specificity of the proposed method are 65.78%, 43.101%, 

nd 87.12%, respectively. The results indicate that using RPA leads 

o generate an optimal image feature vector that can build a GBM 

odel with significantly higher prediction accuracy (p < 0.05) than 

sing the GBM models optimized using the other four feature op- 

imization methods. 

Fig. 7 shows two ROC curves, and Table 3 reports the prediction 

erformance values to compare two GBM models trained using 

D features computed from the largest tumor region segmented 
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Fig. 5. The flowchart of the proposed CAD scheme. 

Fig. 6. Comparison of five ROC plots generated using GBM models optimized using five different feature selection or reduction methods. 
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Table 4 

Comparison of prediction performance of five ML 

models. 

AUC value Accuracy 

SVM 0.66 64.55% 

Logistic Regression 0.68 61.93% 

Random Forest 0.63 69.03% 

Decision Tree 0.56 65.16% 

GBM 0.69 71.15% 

n

c

t

a

t

s

b

a

o

s

rom one CT image slice and the 3D features computed from the 

egmented tumor volumes. In these two GBM models, the RPA 

ethod is used to select and generate optimal features. The re- 

ults demonstrate that using 3D image features yields significantly 

igher performance than using 2D features ( p < 0.05) in predicting 

he risk of gastric cancer cases with PM. 

In addition, we also build and compare several other types of 

L models, including logistic regression, support vector machine 

SVM), random forest, and decision tree. All models are trained 

nd tested using the same LOCO cross-validation method embed- 

ed with RPA and SMOTE schemes. Table 4 and Fig. 8 present the 

esults to compare the prediction performance of five ML models, 

hich shows that GBM yields the highest accuracy than the other 

our ML models. However, AUC values between GBM, SVM, and lo- 

istic regression-based ML models are not statistically significantly 

ifferent (p > 0.05). 

. Discussion 

CT is the most popular imaging modality to detect and diag- 

ose gastric cancer, and it may also provide a non-invasive alter- 
7 
ative method to predict the risk of PM in advanced gastric can- 

er patients. Despite the potential advantages of using CT to de- 

ect or predict the risk of PM, the efficacy of radiologists in reading 

nd interpreting CT images for PM detection is insufficient [37] . Al- 

hough studies have suggested that developing and applying CAD 

chemes integrated with the radiomics concept and ML model is 

eneficial and may provide radiologists a second opinion to more 

ccurately detect and diagnose different abnormalities [38] , devel- 

ping ML models using a large number of radiomics features and 

mall training dataset remains a difficult task. In this study, we ex- 



S. Mirniaharikandehei, M. Heidari, G. Danala et al. Computer Methods and Programs in Biomedicine 200 (2021) 105937 

Fig. 7. Comparison of two ROC plots generated by two GBM models optimized us- 

ing 2D and 3D features generated using the RPA method, respectively. 
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lore a new approach to develop a new CAD scheme or ML model 

ith several unique characteristics and novel ideas in feature ex- 

raction and ML model optimization to improve accuracy in de- 

ecting advanced gastric patients with PM. 

First, in a previous study conducted in this area, the authors 

erformed manual segmentation of gastric cancer tumor regions 

rom the single CT image slices [39] . However, manual segmen- 

ation of tumor regions is often inconsistent with large inter- 

bserver variability due to the fuzzy boundary of the tumor re- 

ions, which makes the computed image features also inconsis- 

ent or not reproducible. Thus, the prediction accuracy may be af- 

ected or not robust. To solve this issue, we in our study devel- 

ped an interactive CAD scheme with a graphical user interface 

GUI) to initiate the segmentation of tumor regions from CT im- 

ges. A user only needs to place an initial seed around the cen- 

er of the tumor region that has the largest size in one CT slice. 

AD scheme then segments tumor regions on all involved CT im- 

ge slices automatically. The segmentation results can also be visu- 

lized by the human eyes on the GUI window. Although we have 

esigned and installed a correction function icon in the GUI and 

he user can activate this function to order CAD scheme correct- 

ng the segmentation errors (if any), the results in this study show 
Fig. 8. Comparison of ROC pl

8 
hat the CAD scheme can achieve satisfactory results on automati- 

ally segmenting all 3,305 tumor regions from all 159 cases in our 

ataset. 

Second, although the previous study [40] has reported devel- 

ping a radiomics based ML model to detect and diagnose gastric 

ancer using CT images, in that study, the Authors used image fea- 

ures computed just from one manually selected CT image slice, 

hich may not accurately represent image features of the entire 

umor. To address this issue, we conduct the first study that devel- 

ps and tests a new ML model using 3D image features. Our study 

esults support our hypothesis that using 2D image features ex- 

racted from only one CT slice is not sufficient enough to represent 

he heterogonous characteristics of the tumors, while using 3D im- 

ge features can yield significantly higher prediction performance. 

pecifically, in this study, we have performed 3D tumor segmenta- 

ion and extracted 3D image features to detect or predict the risk 

f advanced gastric patients having PM. As shown in Table 3 , the 

rediction performance of the GBM model trained using 3D fea- 

ures yields AUC = 0.69 ±0.019 and an accuracy of 71.2%, which are 

ignificantly higher than the GBM model trained using 2D features 

ith AUC = 0.66 ±0.017 and the accuracy of 68.4% (p < 0.05), re- 

pectively. 

Third, in developing CAD schemes to train ML models, identify- 

ng a small and efficient set of image features plays a critical role 

 41 , 42 ]; therefore, in previous studies, different feature dimension- 

lity reduction methods have been investigated [ 43 , 44 ]. Although 

hese studies made many improvements in optimizing the fea- 

ure vectors, there is a significant challenge of achieving small fea- 

ure vectors representing the complex and non-linear image fea- 

ure space. In this study, we investigate the feasibility of apply- 

ng the RPA to the medical imaging informatics field in optimizing 

he CAD scheme or ML model. Our study results show that RPA 

s a promising technique to reduce the dimensionality of a set of 

oints lying in Euclidian space for very heterogeneous feature data, 

hich commonly occurs in medical images and has advantages to 

chieve high robustness in classification and low risk of overfitting. 

ig. 6 illustrates that the prediction performance of the GBM model 

mbedded with RPA yields significantly higher performance than 

ther GBM models embedded with the other four popular feature 

eduction methods (PCA, LASSO, MRMR, and RFE). As presented in 

able 2 , the AUC value after applying the RPA reached the highest 

rediction accuracy of 71.2% than the other four feature reduction 

ethods. Moreover, the computed Cohen’s Kappa coefficient value 

s 0.68, which indicates the reliability or robustness of the GBM 

odel optimized using the RPA method. 
ots of five ML models. 
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Fourth, since many ML models have been developed and used 

n medical imaging informatics or CAD fields, selecting which ML 

odel can also be a challenging issue. In this study, we also com- 

are the prediction performance of five popular ML models. The 

esults show that many different ML models can yield very com- 

arable performance, as shown in Table 4 and Fig. 8 . However, 

omparing with the data presented in Table 2 , we can find that 

electing or generating optimal features plays a more critical role 

r contribution than choosing a different ML model. Thus, combing 

he above new observations of this study, we demonstrate that due 

o the very complicated distribution of radiomics features com- 

uted from medical images, RPA is a promising and more powerful 

echnique applicable to generate optimal feature vectors for better 

raining ML models used in CAD schemes of medical images. 

Despite the encouraging results, we also notice some limita- 

ions in this study. First, the dataset used in this study is relatively 

mall; hence to validate the results of this study, larger datasets 

re required before being tested in future prospective clinical stud- 

es. Second, although in this study, we have used synthetic data 

o balance the dataset and reduce the impact of an imbalanced 

ataset, using the SMOTE technique is just efficient for the low di- 

ensional data, and it may not be appropriate or optimal for high 

imensional data [45] . Third, in the initial pool of features, we only 

xtracted a limited number of 315 statistics and textural features, 

hich are much less than the number of features computed based 

n recently developed radiomics concepts and technology in other 

tudies [46] . Thus, more texture features can be explored in future 

tudies to increase the diversity of the initial feature pool, which 

ay also increase the chance of selecting or generating more opti- 

al features to significantly improve the accuracy of the ML model 

o predict the risk of PM. To overcome the above limitations, more 

tudies and progress are needed in this field. 

In summary, regardless of the above limitations, this is a valid 

roof-of-concept study that reveals a new and promising approach 

o identify and generate optimal feature vectors for training ML 

odels implemented in CAD schemes of medical images. Since op- 

imizing the feature vector is one of the critical steps of building 

n optimal ML model using the radiomics concept, the presented 

ethod in this study is not only limited to the detection of ad- 

anced gastric patients with PM, and it can also be beneficial for 

ther medical imaging studies of developing ML models to detect 

ifferent types of cancers or abnormalities in the future. 

eclaration of Competing Interest 

The authors declare that they have no competing interests. 

uthors’ contributions 

SM Conceptualized the idea, performed formal Analysis and in- 

estigated the Methodology and wrote the original draft. MH as- 

isted with Data Curation. GD helped in Analysis. BZH and SL su- 

ervised the project. BZH was responsible for Funding Acquisi- 

ion.All authors provided critical feedback and helped in reviewing 

nd editing the final draft. 

cknowledgment 

This study is supported in part by research grant R01 CA197150 

rom the National Cancer Institute . The authors also thank the sup- 

ort from the Stephenson Cancer Center, University of Oklahoma. 

eferences 

[1] F. Bray , et al. , Global cancer statistics 2018: GLOBOCAN estimates of incidence
and mortality worldwide for 36 cancers in 185 countries, CA 68 (6) (2018) 

394–424 . 
9 
[2] A. Biondi , et al. , Neo-adjuvant chemo (radio) therapy in gastric cancer: current 
status and future perspectives, World J. Gastrointest. Oncol. 7 (12) (2015) 389 . 

[3] T. Fukagawa , et al. , A prospective multi-institutional validity study to evalu- 
ate the accuracy of clinical diagnosis of pathological stage III gastric cancer 

(JCOG1302A), Gastric Cancer 21 (1) (2018) 68–73 . 
[4] F.-H. Wang , et al. , The Chinese Society of Clinical Oncology (CSCO): clinical 

guidelines for the diagnosis and treatment of gastric cancer, Cancer Commun. 
39 (1) (2019) 1–31 . 

[5] F. Coccolini , et al. , Intraperitoneal chemotherapy in advanced gastric cancer. 

Meta-analysis of randomized trials, Eur. J. Surg. Oncol. (EJSO) 40 (1) (2014) 
12–26 . 

[6] H. Ishigami , et al. , Phase III trial comparing intraperitoneal and intravenous 
paclitaxel plus S-1 versus cisplatin plus S-1 in patients with gastric cancer 

with peritoneal metastasis: PHOENIX-GC trial, J. Clin. Oncol. 36 (19) (2018) 
1922–1929 . 

[7] P. Lambin , et al. , Radiomics: extracting more information from medical images 

using advanced feature analysis, Eur. J. Cancer 48 (4) (2012) 4 41–4 46 . 
[8] H.J. Aerts , et al. , Decoding tumour phenotype by noninvasive imaging using a 

quantitative radiomics approach, Nat. Commun. 5 (1) (2014) 1–9 . 
[9] Z.-Q. Sun , et al. , Radiomics study for differentiating gastric cancer from gastric 

stromal tumor based on contrast-enhanced CT images, J. X Ray Sci. Technol. 27 
(6) (2019) 1021–1031 . 

[10] L. Wang, et al., CT-based radiomics nomogram for preoperative prediction of 

No.10 lymph nodes metastasis in advanced proximal gastric cacner, Eur. J. Surg. 
Obcol. (2020), doi: 10.1016/j.ejso.2020.11.132 . 

[11] B. Zheng , et al. , Interactive computer-aided diagnosis of breast masses: com- 
puterized selection of visually similar image sets from a reference library, 

Acad. Radiol. 14 (8) (2007) 917–927 . 
[12] G. Danala , et al. , Classification of breast masses using a computer-aided diag-

nosis scheme of contrast enhanced digital mammograms, Ann. Biomed. Eng. 

46 (9) (2018) 1419–1431 . 
[13] R.R. Gundreddy , et al. , Assessment of performance and reproducibility of ap- 

plying a content-based image retrieval scheme for classification of breast le- 
sions, Med. Phys. 42 (7) (2015) 4241–4249 . 

[14] A. Rajaei , L. Rangarajan , Wavelet features extraction for medical image classi- 
fication, Int. J. Eng. Sci. 4 (2011) 131–141 . 

[15] D. Hazra , Texture recognition with combined GLCM, wavelet and rotated 

wavelet features, Int. J. Comput. Electr. Eng. 3 (1) (2011) 146 . 
[16] S. Mirniaharikandehei , et al. , Developing a quantitative ultrasound image fea- 

ture analysis scheme to assess tumor treatment efficacy using a mouse model, 
Sci. Rep. 9 (1) (2019) 1–10 . 

[17] N. Ahmadi , G. Akbarizadeh , Iris tissue recognition based on GLDM feature ex- 
traction and hybrid MLPNN-ICA classifier, Neural Comput. Appl. 32 (7) (2020) 

2267–2281 . 

[18] F. Zhao , C.J. Desilva , Use of the Laplacian of Gaussian operator in prostate
ultrasound image processing, in: Proceedings of the 20th Annual Interna- 

tional Conference of the IEEE Engineering in Medicine and Biology Society. 
Vol. 20 Biomedical Engineering Towards the Year 20 0 0 and Beyond (Cat. No. 

98CH36286), IEEE, 1998 . 
[19] E. Bingham , H. Mannila , Random projection in dimensionality reduction: ap- 

plications to image and text data, in: Proceedings of the Seventh ACM SIGKDD 
International Conference On Knowledge Discovery And Data Mining, 2001 . 

20] Q. Wang , et al. , Hierarchical feature selection for random projection, IEEE 

Trans. Neural Netw. Learn. Syst. 30 (5) (2018) 1581–1586 . 
[21] M.L. Mekhalfi, et al. , Fast indoor scene description for blind people with mul- 

tiresolution random projections, J. Visual Commun. Image Represent. 44 (2017) 
95–105 . 

22] N.F.M. Suhaimi , Z.Z. Htike , Comparison of Machine Learning Classifiers for di- 
mensionally reduced fMRI data using Random Projection and Principal Compo- 

nent Analysis, 2019 7th International Conference on Mechatronics Engineering 

(ICOM), IEEE, 2019 . 
23] Xie, H., J. Li, and H. Xue, A survey of dimensionality reduction techniques 

based on random projection. arXiv preprint arXiv:1706.04371, 2017. 
24] C.C. Aggarwal , A. Hinneburg , D.A. Keim , On the surprising behavior of distance

metrics in high dimensional space, International Conference on Database The- 
ory, Springer, 2001 . 

25] S. Dasgupta , A. Gupta , An elementary proof of a theorem of Johnson and Lin-

denstrauss, Random Struct. Algorithms 22 (1) (2003) 60–65 . 
26] M. Pechenizkiy , A. Tsymbal , S. Puuronen , PCA-based feature transformation for 

classification: issues in medical diagnostics, in: Proceedings. 17th IEEE Sympo- 
sium on Computer-Based Medical Systems, IEEE, 2004 . 

27] R. Tibshirani , Regression shrinkage and selection via the lasso, J. R. Statist. Soc. 
58 (1) (1996) 267–288 . 

28] H. Peng , F. Long , C. Ding , Feature selection based on mutual information crite-

ria of max-dependency, max-relevance, and min-redundancy, IEEE Trans. Pat- 
tern Anal. Mach. Intell. 27 (8) (2005) 1226–1238 . 

29] X. Zeng , et al. , Feature selection using recursive feature elimination for hand- 
written digit recognition, 2009 Fifth International Conference on Intelligent In- 

formation Hiding and Multimedia Signal Processing, IEEE, 2009 . 
30] A. Fernández , et al. , SMOTE for learning from imbalanced data: progress and 

challenges, marking the 15-year anniversary, J. Artif. Intell. Res. 61 (2018) 

863–905 . 
[31] K.J. Wang , et al. , A hybrid classifier combining Borderline-SMOTE with 

AIRS algorithm for estimating brain metastasis from lung cancer: a case 
study in Taiwan, Comput. Methods Programs Biomed. 119 (2) (2015) 63–

76 . 

https://doi.org/10.13039/100000054
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0001
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0001
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0001
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0002
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0002
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0002
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0003
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0003
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0003
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0004
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0004
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0004
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0005
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0005
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0005
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0006
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0006
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0006
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0007
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0007
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0007
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0009
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0009
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0009
https://doi.org/10.1016/j.ejso.2020.11.132
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0011
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0011
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0011
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0012
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0012
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0012
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0013
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0013
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0013
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0014
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0014
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0014
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0015
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0015
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0016
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0016
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0016
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0017
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0017
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0017
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0018
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0018
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0018
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0019
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0019
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0019
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0020
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0020
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0020
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0021
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0021
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0021
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0022
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0022
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0022
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0024
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0024
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0024
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0024
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0026
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0026
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0026
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0027
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0027
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0027
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0027
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0028
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0028
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0029
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0029
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0029
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0029
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0030
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0030
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0030
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0031
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0031
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0031
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0032
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0032
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0032


S. Mirniaharikandehei, M. Heidari, G. Danala et al. Computer Methods and Programs in Biomedicine 200 (2021) 105937 

[

[  

[  

[

[  

[  

[  

[  

[  

[  

[  

[

[

[  

 

32] S. Yan , et al. , Improving lung cancer prognosis assessment by incorporating 
synthetic minority oversampling technique and score fusion method, Med. 

Phys. 43 (6Part1) (2016) 2694–2703 . 
33] F. Aghaei , et al. , Applying a new quantitative global breast MRI feature analysis

scheme to assess tumor response to chemotherapy, J. Magn. Reson. Imaging 44 
(5) (2016) 1099–1106 . 

34] R. Hu , X. Li , Y. Zhao , Gradient boosting learning of Hidden Markov models, in:
2006 IEEE International Conference on Acoustics Speech and Signal Processing 

Proceedings, IEEE, 2006 . 

35] M.L. McHugh , Interrater reliability: the kappa statistic, Biochem. Med. 22 (3) 
(2012) 276–282 . 

36] M. Heidari , et al. , Improving the performance of CNN to predict the likelihood
of COVID-19 using chest X-ray images with preprocessing algorithms, Int. J. 

Med. Inf. 144 (2020) 104284 . 
37] R. Seevaratnam , et al. , How useful is preoperative imaging for tumor, node,

metastasis (TNM) staging of gastric cancer? A meta-analysis, Gastric Cancer 15 

(1) (2012) 3–18 . 
38] V.M. Gonçalves , M.E. Delamaro , F.d.L.d.S. Nunes , A systematic review on the

evaluation and characteristics of computer-aided diagnosis systems, Rev. Bras. 
Eng. Bioméd. 30 (4) (2014) 355–383 . 
10 
39] S. Liu , et al. , CT textural analysis of gastric cancer: correlations with immuno-
histochemical biomarkers, Sci. Rep. 8 (1) (2018) 1–9 . 

40] R. Li , et al. , Detection of gastric cancer and its histological type based on iodine
concentration in spectral CT, Cancer Imaging 18 (1) (2018) 1–10 . 

[41] M. Kuhn , K. Johnson , An introduction to feature selection, in: Applied Predic- 
tive Modeling, Springer, 2013, pp. 487–519 . 

42] M. Tan , J. Pu , B. Zheng , Optimization of breast mass classification using se-
quential forward floating selection (SFFS) and a support vector machine (SVM) 

model, Int. J. Comput. Assist. Radiol. Surg. 9 (6) (2014) 1005–1020 . 

43] S. Khalid , T. Khalil , S. Nasreen , A survey of feature selection and feature extrac-
tion techniques in machine learning, 2014 Science and Information Conference, 

IEEE, 2014 . 
44] G. Chandrashekar , F. Sahin , A survey on feature selection methods, Comput. 

Electri. Eng. 40 (1) (2014) 16–28 . 
45] R. Blagus , L. Lusa , SMOTE for high-dimensional class-imbalanced data, BMC 

Bioinform. 14 (2013) 106 -106 . 

46] T. Wang , et al. , Correlation between CT based radiomics features and gene ex-
pression data in non-small cell lung cancer, J. X Ray Sci. Technol. 27 (5) (2019)

773–803 . 

http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0033
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0033
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0033
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0034
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0034
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0034
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0035
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0035
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0035
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0035
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0036
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0036
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0037
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0037
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0037
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0038
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0038
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0038
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0039
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0039
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0039
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0039
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0040
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0040
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0040
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0041
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0041
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0041
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0042
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0042
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0042
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0043
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0043
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0043
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0043
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0044
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0044
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0044
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0044
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0045
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0045
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0045
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0046
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0046
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0046
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0047
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0047
http://refhub.elsevier.com/S0169-2607(21)00011-0/sbref0047

	Applying a random projection algorithm to optimize machine learning model for predicting peritoneal metastasis in gastric cancer patients using CT images
	1 Introduction
	2 Materials and methods
	2.1 Image dataset
	2.2 Tumor segmentation
	2.3 Feature extraction
	2.4 Feature dimensionality reduction using random projection algorithm
	2.5 Machine learning model

	3 Results
	4 Discussion
	Declaration of Competing Interest
	Authors’ contributions
	Acknowledgment
	References


